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Evaluation:

The purpose of this research was to study and develop techniques to

make the software maintenance process more efficient The effort was

initiated in response to requirements defined in the RADC Technical

Rlan in Software Engineering, TPO 4G3. This subthrust supports the

development of software concepts and tools required for the Software

development and software maintenance of Air Force systems.

The research, which covered three years of effort produced four

interim reports, a final report in three volumes and numerous papers.

Topics investigated included ripple effect analysis, software testing,

specification for program modification, and quality factors for

software maintenance.

The technical discussion provided in the interim reports and in Vol I

of the final report can be used to further the development of software

maintenance tools to enhance the maintenance process. The technical

discussion on ripple effect analysis supports the Handbook generated.

The discussion on effective testing provides information on how to

test software after changes are made. The material on the generation

of specifications for proposed modifications makes use of recent work

in formal specification languages in an attempt to provide clear,

unambiguous change orders to software personnel. The material on
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stability measures and dynamic monitoring can be used by those who are

attempting to establish criteria for assessing the quality of

software. Volume II and III of the final report represent a Handbook

which can be used effectively by software maintenance personnel

actively engaged in making software changes. The Handbook can guide

them on determining what sections of code will be impacted by a

modification and how the modification can affect the logical and

performance characteristics of the original software.

The fruitful results obtained, which represent a good start on

defining and controlling the software maintenance process, have

warranted the initiation of a follow-on effort to continue studying

the problem and to refine the concepts and techniques develcped.

ROCWD F. IUOINO
Project Engineer
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1.0 OBJECTIVE

This report summarizes the research performed under Contract No.

F30602-76-C"0997 by Northwestern University for Rome Air Development Center

during the period of August 1, 1976 to January 15, 1980. Research results

which have been presented in previous papers and interim technical reports

are summarized, and unfinished work is presented. Publications, presentations

and technical personnel related to this project are described.

The objective of this effort is to conduct applied research for the

development of effective techniques for the design, implementation,validation,

and evaluation of reliable and maintainable software systems with a high

degree of automation. The following areas of research are to be emphasized:

methodologies for the design and implementation of easily maintainable soft-

ware; techniques for static and dynamic analysis and measurement of computer

programs; techniques for evaluating and improving the maintainability of

existing computer programs.

During this contract period, significant results have been obtained in

developing techniques which contribute to effective maintenance of large-scale

software, and in evaluating the maintainability of computer programs. Before

discussing our research results, let us first examine the maintenance process

and quality factors affecting software maintainability.

2.0 SOFTWARE MAINTENANCE PROCESS AND ASSOCIATED QUALITY FACTORS

It is noted that software maintenance is a very broad activity that

includes error corrections, enhancements of caDabilities, deletion of obsolete

capabilities, optimization, and minor changes in mission requirements [1-7].

Once a particular objective for the maintenance activity is established, the

objective can be accomplished in four phases as described in Figure 1 [8].

The first phase consists of analyzing the program in order to understand

it. Several factors such as the complexity of the program, the documentation,

and the self-descriptiveness of the program contribute to the ease of under-

standing the program.

The second phase consists of generating a particular maintenance proposal

to accomplish the implementation of the maintenance objective. This requires

a clear understanding of both the maintenance objective and the program to

be modified. Several factors, such as the extensibility of the program,
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fI
contribute to the generation of various program maintenance proposals with

ease.

The third phase consists of accounting for all of the ripple effect as

a consequence of the modification. In software, the effect of a modification

may not be local to the modification, but may also affect other portions of

the program. There is a ripple effect from the location of the modification

to the other parts of the program that are affected by the modification. One

aspect of this ripple effect is logical or functional in nature. Another

aspect of this ripple effect concerns the performance of the program. During

software maintenance, it is possible to perform a modification to the program,

investigate its logical ripple effect and locate the inconsistencies intro-

duced throughout the program by the !::.ification. After all the logical

corrections have been made to the prram, the maintenance personnel may con-

clude that they have restored the program ti its previous level of functional

correctness. The performance of the progrm, however, may have been altered

as a direct result of this maintenance activity. Since a large-scale program

usually has both functional and performance requirements, the net result of

the maintenance effort may be satisfactory to the functional requirements,

but not to some performance requirement. In many large-scale programs, the

violation of a performance requirement is equivalent to a program error and,

thus, requires further corrective action. Consequently, it is important in

the maintenance process to fully understand the potential effect of a modifi-

cation to the program from both a logical and performance point of view. The

primary factor affecting the ripple effect as a consequence of a program mod-

ification is the stability of the program. Program stability is defined as

the resistance to the amplification of program modifications.

The fourth phase consists of testing the modified program to insure that

it is correct. It is important that cost-effective testing techniques be

applied during maintenance. The primary factor contributing to the success of

these cost-effective techniques is the testability of the program. Program

testability is defined as a measure of how little effort is required to test

the program. Each of these phases for accomplishing the maintenance objective

along with the major software quality factors affecting each phase of the

maintenance process is described in Figure 1.
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With the above discussion, it is easily seen where our results contri-

bute to large-scale software maintenance. Our results can be summnarized in

the following areas: 1. ripple effect analysis, 2. generation of specifica-

tion f or program modifications, 3. effective testing for software maintenance,

4. quality factors for software maintainability, and 5. dynamic monitoring

of software behavior. We will summarize our results in each of these areas

in following sections.

3.0 RIPPLE EFFECT ANALYSIS

As discussed before, a significant factor contributing to the complexity

and cost of performing software maintenance is the fact that the effect of a

program modification may not be local to the location of modification, but

may also affect other portions of the program. This constitutes a ripple

effect from the location of modification to other parts of the program that

are affected by the modification. The ripple effect has both a functional

and performance perspective [1).

We have developed a ripple effect analysis methodology for both logical

and performance ripple effect analysis. The techniques can be developed as a

powerful tool to help maintenance personnel understand the scope of effect of

their changes on the program by identifying the parts of the program which

must be checked for logical consistency and sources for performance degrada-

tion.

A series of technical reports and papers has been prepared to describe

our results in this area [1,9-11]. A handbook [91 has been prepared to

describe our ripple effect analysis methodology. The detailed description as

well as the capabilities and limitation of the logical iipple effect analysis

technique is contained in Section 3.1. The detailed description of the per-

formance ripple effect analysis technique is contained in the technical

reports [10,11]. In this section, logical ripple effect will be analyzed

through the development of an intramodule error flow model and an intermodule

error flow model. A logical ripple effect analysis technique based upon

these models will also be developed. Some implementation considerations for

developing a tool to perform logical ripple effect analysis on programs

written in a subset of JOCIT JOVIAL language will also be discussed.

4



3.1 Logical Ripple Effect Analysis Models

In this section, models will be developed for the analysis of logical

ripple effect. The analysis of logical ripple effect corresponds to an analy-

sis of how logical errors may propagate through the program. This error flow

can be simplified by decomposing it into the error flow which occurs within a

module and the error flow which occurs between modules. An understanding of

how error flow occurs both within a module and among modules is sufficient to

understand how error flow occurs in the entire program. Thus, in this section,

the error flow in the program will be modelled utilizing an intramodule error

flow model and an intermodule error flow model.

3.1.1 Intramodule Error Flow Model

In order to develop a model of how the error flow occurs within a module,

it is first necessary to develop a model of a program module. A program

module is defined to be a separately invokable piece of code having single

entry and single exit points. Practically speaking, a module can correspond

to a SUBROUTINE or PROCEDURE, etc.* To reduce complexity, our program module

model represents a module as a set of program blocks. A program block is a

maximal sequence of computer statements having the property that each time any

statement in the sequence is executed, all are executed; except when a module

invocation is encountered. Each program block has a single entry point and a

single exit point. The flow of control among these program blocks is then

represented in our program module model by a digraph G, which consists of a

set of vertices, V= (v1,v 2 1... vi,... 9~Vk)' representing the set of program

blocks and a set of branches, B, of ordered pairs of vertices representing

the flow of control from the exit point of a program block to the entry of

another program block. The set of blocks which are immediate predecessors of

a blck i i deote byI-1(vi), and the set of blocks which are immediate
successors of vi is denoted by I(vi).

The program module model can be utilized to simplify intramodule error

Fflow by decomposing it into the error flow which occurs within a program

block and the error flow which occurs between program blocks in the module.

In order to analyze the error flow within program blocks and between program

blocks, it is necessary to develop a characterization for a program block

which reflects how potential errors flow within the block.
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The basis f or the characterization of a program block requires the iden-

tification of all data items, control items, data definitions, control defi-

nitions, data usages, and control usages in the program block. A data item

is a member of the set of minimal information units which describe the pro-

gram. They basically consist of the program's variables. A control item is

assigned for each control directive which determines the execution of a state-

ment or a sequence of statements. The predicate in a conditional statement

provides a control directive which determines the outcome of the decision

point, and hence a control item is assigned to represent the predicate. An

iterative statement which establishes a controlled loop also provides one type

of control item. A control item can be artificially defined in a manner that

it will not create any error flow in the program by assigning to it a symbolic

name which is guaranteed to be unique in the program. This can easily be

accomplished by specifying a format for control items which is absolutely

different from that of any name in any programming language.

A data definition is a data item whose value is modified in an expression

or part of an expression. A data usage is a data item which is referenced

without change in an expression or part of an expression. A control defini-

tion is a control item whose associated control directive is defined in an

expression or part of an expression. A control usage is a control item whose

associated control directive may affect a data or control definition in an

expression or part of an expression. For example, in a DO statement,

(DO 100 1 = A,B,C), the control item assigned for the control directive is a

control definition while program variables A, B and C are data usages iden-

tified from the DO statement.

it is assumed in our program block characterization that all data items

have a unique memory address and that this memory address can be symbolically

determined prior to program execution. A data item is said to employ explicit

addressing if the memory address of the data item can be symbolically deter-

mined prior to program execution; otherwise, it is said to employ implicit

addressing. A control item is considered as employing explicit addressing

although there is no memory address for it. An example of implicit addressing

of data items is the array data structure. The integrity of a data structure

employing implicit addressing can only be kept if no element in the data

6



structure is affected by the error flow.

Tracing the exact error flow for programs which contain data structures

employing implicit addressing is infeasible due to the inability to precisely

define the error behavior of these data structures. However, the worst error

flow can be computed by treating a data structure as a single data item. Thus,

if an element in a data structure is affected by the error flow, the whole

data structure is considered as being affected by the error flow.

Utilizing this basis, the error flow characterization of a program block

v, can be described by the sets P and Ci and the mapping f all of which are

defined by the following definitions:

Definition 1. The source capable set Ci of a program block vi is the set of

all definitions within vi, in which each element can cause potential errors

to exist in vi .

Ci can be partitioned into two subsets: Cr which contains the defini-

tions employing explicit addressing, and C which contains the definitions

employing implicit addressing.

Definition 2. The potential propagator set P of a program block vi is the

set of usages within vi which can propagate potential errors from outside of
vi to some elements in Ci . A usage x in v. is.an element in P if it is used

i
before or without any redefinition to it.

Definition 3. The flow mapping fi: P 4 Ci is a mapping which maps each

element p in Pi to a set of elements .n Ci such that p can propagate potential

errors to these elements in Ci .

The set of elements in Ci which is mapped by an element p in Pi under f

is denoted by f (p). By definition,

f (p) = (c E Cilp can propagate potential errors to c). (I)

The set of elements in Ci which is mapped by some elements in Pi under f is

denoted by f (P1 ). Obviously,

f (P1 ) = U (p). (2)

The determination of this error flow characterization for each program

block in the module enables the error flow within program blocks and between

program blocks in the module to be modeled by our intramodule error flow

7



model. This intramodule error flow model describes the error flow within

the module in terms of primary, secondary, and propagation error source sets

which are defined as follows:

Definition 4. A primary error source is a definition which is involved in

the initial modification. The primary error sources identified in a program

block vi constitute the primary error source set (LKi) of vi.

Definition 5. A definition x in vi is implicated as a secondary error source

by an element p in P if x E fi(p) and p is a primary or secondary error

source itself.

Various primary and secondary error sources together form propagation

error source sets for various blocks. The propagation error source set of a

program block vi is formally defined as follows:

Definition 6. The propagation error source set 8 is the set of error sources

which flow out of v.. The module propagation error source set d is defined as

(i' where i indexes the blocks in the module.

The error flow between program blocks is modeled by calculating the set

of error sources which flow out of a program block vi given a propagation

error source set 8 which flows into vi and a primary error source set LKi

for vi. An error source e flows out of v, if it satisfies at least one of

the following conditions:

1) e is a primary error source identified in vi,

2) e is implicated in vi as a secondary error source, or

3) e is an incoming error source which passes through vi.

Thus, the set of all error sources which flow from vi can be calculated as the

union of the sets of error sources each of which contains all of the error

sources satisfying one of the above conditions. Each of these sets can easily

be calculated. The set of error sources satisfying condition 1 is the primary

error source set LKi of vi . As for condition 2, an element x in Pin 8i is

capable of implicating a set of secondary error sources because x is an

incoming error source and it can propagate pot~ntial errors to some defini-

tions in vi. The set of secondary error sources implicated by x is provided

by the flow mapping on x, i.e. fi(x) is the desired set. Thus, fi(Pi n lj)
is the set of all secondary error sources implicated in vi by an incoming

error source set d As for condition 3, an incoming error source x cannot

8



pass through vi if it employs explicit addressing and it is redefined in vi;

in other words, x cannot pass through vi if it is an element in C r.. Hence,

the set of incoming error sources which pass through vi is given by

S- (j r ).
The error flow between program blocks can thus be modeled utilizing a

tracing function for calculating the set of error sources which flows from

given an error source set j which flows into vi and a primary error source

set LKi for vi. The tracing function, f, can be defined by

f(vidi) = f[[j - (Oj n Cri)] U fi(d, n Pi) U LKi). (3)

The error flow from the point of initial modification to other program

areas can then be modelled utilizing this tracing function along with the

error tharacteristics of the program's blocks and the program graph. The pair

(vifi) can be associated with each block vi in the module, where 8 is the

set of error sources which flow from vi. To trace the error flow from a block

s involved in the initial modification, 8s can be initialized by LK s . The

program graph representing the paths between program blocks must then be

examined. If there is only one path between the primary error source block s

and some arbitrary block vi, then 8 can be calculated by the successive

applications of the following tracing function,

i=(f(vi,f(vil,...fvl,s)) ... )ls,v l ,. ..v I is the valid path froms tov. (4)

If multiple paths exist between s and v , then

9= U (F(p)lp is a valid path from s to vi), (5)

where

Fi(p) = ff(vif(vi-i)...,f(vl,8s))...)Ip=s,vl,...,vil. (6)

Furthermore, if the set of blocks S = (slS2,...,sk,...,snI within the module

has the initial modification and if 8k is initialized by LKk for each sk E S,

then

( U (U Fi(p)lp is a valid path from sk to v i, (7)
S kESP

where

Fi(p)-= f(vif(vi.1,...,f(Vl,k))...)P=skvl,...,vi. (8)

9



These tracing functions provide the ability to compute all of the propa-

gation error source sets for all of the blocks in the module affected by the

modification. Our intrarsodule error flow model refines this data to distin-

guish between blocks which must be examined to insure consistency with the

modification and those which need not be examined. This is accomplished by

utilizing a block identification criterion which states that a block requires

no further maintenance if no error source which flows from the block is

internally generated in the block.

After the propagation error source sets of all the blocks in the module

have been computed, the block identification criterion put forth in the fol-

lowing lemma is applied to each block to determine whether the block requires

further maintenance effort.

Lemma L. (Block Identification Criterion). If for a program block s

(9 fl Ci. 0, then v i requires no further maintenance effort.

Proof. (Ifl Ci) = 0 implies that no error source is internally generated in

v i* Thus, the consistency of vi is undisturbed because the error sources in

(spif there are any, are all incoming error sources which pass through v,.

Hence, v. requires no further maintenance effort.
1.

The intramodule error flow model just described models the error flow

from the point of initial modification to other program areas utilizing the

tracing functions. Due to the inherent complexity of these tracing functions,

tracing intramodule error flow is a complicated process. This complexity

inherent in the analysis of error flow can be circumvented,, however, by an

algorithmic solution to the error flow calculation. Instead of applying the

tracing function on an individual path basis in order to build the propagation

error source set of a block as the union of contributions of each path, the

tracing function can be applied on a block-immediate successor block basis to

form an algorithmic technique to calculate the error flow. Applying the

tracing function on a block-ismmediate successor block basis means that errors

are propagated from the initial error source block s to all immediate succes-

sor blocks v i of s, and then from v i to all immediate successor blocks of v.

etc. Application of the tracing function in this manner builds the propaga-

tion error source setd i of a block v i in a stepwise manner with all the error

sources which flow from an immediate predecessor block to vi contributing to

10



the final 89 The tracing function is applied in this manner while new
secondary error sources are created. After the error flow stabilizes, i.e.

no new secondary error sources are created, the block identification criterion

can then be applied as before on each block to determine if the block requires

additional maintenance effort.

An algorithm for tracing this intramodule error flow and identifying the

blocks which are affected by intramodule error flow has been developed. The

input to this algorithm is a set W consisting of (v',8 v,) such that v' is a

primary error source block and 8v, is initialized as LKv,. A set L is

utilized to store the pairs (vidi) of blocks and their associated propagation

error source sets. Another set L' is defined as a set consisting of the pair

(vi, (s , Ci), where vi is a block identified by the block identification

criterion and i n ci is the set of definitions in vi which are affected by

the error flow.

Algorithm 1. Intramodule Error Flow Tracing

Step 1. Initialize L = A. For all vj 1 L, set 8  =0.

Step 2. If L = 0, then go to Step 4. Otherwise, select an element

V = (v', 4,) in L, and set L = L - [V).

Step 3. For each vi E I(v'), if f(vi,8V,) di. then set 6 1 = i U f(vidv,)

and L = L U f(v ,8i)]. Go to Step 2.

Step 4. Initialize L' =0. For each vi E V, if 8 f nc 0 0, then set

L# = U(vi,8i n ci) U L'.

Theorem 1. Algorithm 1 identifies all of the pairs (vi, i n Ci ) of blocks

and their error source sets which are affected by the intramodule error flow

from the primary error sources in a?.

Proof. The proof of this theorem is straightforward. For the pair (viifyCi)

to be in the intramodule error flow from the primary error sources in a,, then

the following criteria must be satisfied:

1) 8i must be calculated for vi by the intramodule error flow tracing

functions previously defined, and

2) vi may require further maintenance effort.

Now the tracing functions are applied on an individual path basis in order to

build up the propagation error source set of a block as the union of the error

flow contributions of each path. It is clear that Steps 1, 2, and 3 of
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Algorithm 1 create an identical error source block applying the tracing func-

tions on a block-immediate successor block basis instead of the union of paths

approach, and hence criterion 1 is satisfied. Step 4 of Algorithm 1 then

applies the block identification criterion to eliminate those blocks identi-

fied by Steps 1, 2, and 3 which do not require maintenance. Lemma 1 states

the blocks satisfying the block identification criterion do not require main-

tenance, and hence criterion 2 is satisfied. Therefore, Steps 1, 2, 3, and 4

identify all blocks which are affected by the intramodule error flow.

3.1.2 Intermodule Error Flow Model

The intramodule error flow model just presented describes the error flow

within program blocks and between program blocks in a module. In this sectioq

an intermodule error flow model which models the error flow between modules

will be presented. This intermodule error flow model characterizes the poten-

tial error flow properties of each module in the program so that the flow of

error sources due to ripple effect can be emulated. To emulate the inter-

module error flow, a basis must be defined to allow the tracing of the error

flow within a module and across module boundaries. Two a priori conditions

must exist before the intermodule error flow can occur. First, error sources

must exist which have the capability to propagate between modules. Second,

an enabled path must exist for error sources to be used during their propa-

gation between modules. These paths consist of communication links (i.e.

parameter passing and data sharing). The paths are enabled at the time of a

module's invocation and, consequently, the invocation may have effects on both

the invoked module and its surrounding environment.

In order to develop the intermodule error flow model, it is first neces-

sary to develop a model for a large scale software system. A large scale

software system can be considered as a collection of program modules. Let

= (Mi,M 2 ,...3MJ,.. .Mn) be the finite set of modules in the software system.

There exists one and only one module in 9 which starts program execution upon

invocation by the operating system. This module is called the initial entry

module. Upon invocation, a module is executed and returns control to the

invoking module. The set of modules which directly invoke a module Mj is

denoted by Il (Mi), and the set of modules which are directly invoked by M

is denoted by I(Mj).

12



A conceptually simple and direct way to model the intermodule error flow

would be to view the system as one composite module. A composite module can

be constructed by utilizing the invocation relationship among modules to per-

form inline code expansion; e.g. the code of a module M 4 is inserted into Mk

wherever Mkinvokes M The intermodule error flow within the software system
F.

could then easily be computed by the intramodule error flow algorithm.

Although this technique is simple and direct, it has a severe limitation. If

many modules are invoked many times, the physical size of the composite

module would become very large and difficult to manage.

Another possibility for modelling the intermodule error flow utilizes a

module error characteristics approach to characterize the potential error

properties of each module in the software system. The module error charac-

teristics of a module H are modelled by two sets 19 and (-' and the module

level flow mapping Y().Elements in9 can propagate potential errors into

H Elements in C can cause potential errors to exist within M or flow out

of M1  The module level flow mapping 7 9 maps each element p in 91to a

set of elements in C, to denote that p can propagate potential errors to these

elements in C 1 The module error characteristics of a module have the same

physical attributes as the block error characteristics of a block since the

module error characteristics are defined from the block error characteristics

of the local blocks in the module.

Since the intermodule error flow is enabled by module invocations, the

potential error flow between the invoked and invoking modules must be estab-

lished for each module invocation. *Suppose that a module M is invoked in

another module Mk~. The potential error sources can flow to and from H only

through the interface between H and other modules, i.e. the formal para-

meters of M and the data items shared between H and other modules. This

potential error flow to and from H through Misinterface can be modeled by

H ls error characteristics. To establish the potential error flow betweenM

and TMk due to this invocation, a sequence of three blocks may be characterized

for M ' The first block in the sequence v i 1 is called an input parameter

error flow mapping block, and is used to establish the potential error flow

through the interface from TMk to M1 via input parameter passing. The second

block in the sequence, vi, is referred to as a module invocation block, and

13



is used to reflect the potential error flow to and from Mthrough its inter-

face. The third block in the sequence v + is called an oiutput parameter

error flow mapping block, and is used to establish the potential error flow

from M 's interface back to M4k via output parameter passing. The block error

characteristics of the input parame~ter error flow mapping block Viil are

determined by input parameter mapping. Each data item x which appears as an

actual input parameter can propagate potential error to its corresponding

formal input parameter, say y. Hence, x is an element in P,_,, y is an

element in C -1and y is mapped by x under f i1l (PI- ) The block error

characteristics of the module invocation block v.i are assigned the respective

attributes of -the module error characteristics of Hj i.e.* P i -Pi <-C9

and f P (P i~ j~) The block error characteristics of the output parameter

error flow mapping block v i+1 are determined by output parameter mapping.

Each formal output parameter w of M can propagate potential errors to its

corresponding actual output parameter, say u. Hence, w is an element of

P +1u is an element in C +1 and u is mapped by w under f *+1 (Pil) Note

that if M has no formal parameters, only one block has to be assigned as

the module invocation block for an invocation of M if M is a function,

the third block in the sequence can be omitted because the function name

represents the sole output parameter of M and the function name is an element

in MH 's interface which is referenced without parameter mapping.

Note that for a programming language, such as JOVIAL, which has the

capability to syntactically identify a formal parameter as an input or output

parameter, the error flow between the formal and actual parameters can be

constructed before the module error characteristics of the invoked module are

defined. Otherwise, it can only be constructed after the invoked module's

error characteristics have been derived and the parameters have been classi-

fied as input and/or output parameters. A formal parameter of a module MH is

identified as a formal input parameter if it is an element in, or a formal

output parameter if it is an element in C, -

The module error characteristics approach described above provides a

natural way to characterize the error flow in a modular software system.

Note that the block error characteristics of the block(s) assigned for a

module invocation in the invoking module can only be specified after the

14



module error characteristics of the invoked module have been defined.

Figure 2 illustrates the module error characteristics approach upon an invo-

cation of Mj in Mk.

Modelling the intermodule error flow utilizing this module error char-

acteristics approach requires that the potential error properties of the

modules in M be characterized by their respective module error characteristics.

It is necessary that a module have its error characteristics defined after the

MkM

S- - - - - -- SUBROUTINE A(YW)

I Y-input formal parameter

W-output formal parameter

SI

ij-l (X;Cif1[Y); n I n
f inl(X)=Yf f

CALL A(XU) t P i Ci

f i(P i)

I ~II

i P+I= [W] ;Cj+l = (U]; JJ

Ci -C j
I

Figure 2. An illustration for the module error characteristics
approach to intermodule error flow analysis.
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module(s) it invokes because the block error characteristics of the block(s)

assigned for a module invocation in the module can only be specified after

the module error characteristics of the invoked module have been defined. The

order in which the module error characteristics of the modules in M7 are
defined is thus determined by the reverse invocation order [12]. However,-

there is a limitation imposed by the reverse invocation order. That is, no

module can be invoked recursively. Although this limitation can be overcome,

we will assume that no modules are invoked recursively.

Since the intermodule error flow is modelled utilizing a module error

characteristics approach, it is necessary to analyze the computation of these

module error characteristics. This requires an examination of the properties

of the intermodule error flow. Since the intermodule error flow is enabled

at the time of a module's invocation, potential error sources can flow to and

from a module via parameter passing and data shAring. The formal parameters

of a module and the data items which are shared between the module and other

modules form the parameter list of the module, which defines the interface

between the module and its surrounding environment. An error source can prop-

agate to and from a module if and only if the affected data item is an element

of the parameter list of* the module. Thus, an element in the parameter list

of a module possesses a passed attribute or a global attribute depending upon

the scope of effect of the data item. Figure 3 illustrates the concept of

* parameter list through which potential errors can flow across the module's

boundaries.

Elements in a module's parameter list possess certain error properties

which can be passive and active. A passive element is a data item that is in

the module's parameter list, but cannot cause inconsistency to exist within

the module. An example of this type of element would be a data item which is

just passing through the module. Thus, if this data item is an error source,

it cannot create new error sources within the, module since the module does

not make any direct use of the data item. An active element is a data item

which can cause inconsistency to exist within the module. This element

possesses the following error properties.

1) It can be an incoming error source which causes the creation of a poten-

tial error source which can flow out of the module.4
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Elements having

passed attributes

Communications
with other modules 

Module

in surrounding (M.)environment

Elements having

global attributes

PARAMETER LIST

Module M interfaces

with its surrounding
environment via its
parameter list

Figure 3. An illustration for operational environment
model.
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2) It can be an incoming error source which causes the creation of potential

error sources which all remain within the module.

3) It can be an error source which flows out of the module.

4) It can be a combination of 1) and 3), or 2) and 3).

Utilizing the error properties that each element in the parameter list

of a module may possess, the potential error properties of a module which are

modelled by the module error characteristics of the module can be character-

ized. Let M. denote the module being characterized. The elements in 9 which
J j

can propagate potential errors to M. possess error property 1) or 2). C, is

partitioned into the subsets C d  and Cd . Subset3d represents the set of

natural source capable definitions whicA can propagate potential errors out of

M. The elements in C-d possess the error property 3). An element p in i

which possesses the error property I) maps to a set of elements in Cd  under

1(19 ). This implies that p can propagate potential errors to these Alements

in Cd which can flow out of M The subset C, consists of pseudo source
d. Fc

capable definitions which are defined for the elements in 1j, each of which

possesses the error property 2). The elements in a cannot propagate poten-
c

tial errors out of M The existence of C- is required to preserve the com-coc

patibility between the error characteristicl of a module and the error char-

acteristics of a block. Preservation of the compatibility insures that the

intramodule error flow algorithm will correctly identify those local blocks

which are affected by the error flow and invoke M. The elements in Cc .an

be defined in such a manner that they will not create any erroneous sec ndary

error sources within the invoking module. The element in Cc assigned for an

element in 9 which possesses the error property 2) is mappe by that element

in 9 under 9 (91). Figure 4 illustrates the concept of module error charac-

teristics which characterize the potential error properties of the modules.

Essential to computing a module's error characteristics is the assignment

of a dummy entry block and a dummy exit block for each module. The entry

block which represents the single entry point of the module is used to accom-

modate the flow of error sources from other modules to the module. The exit

block which represents the single exit point of the module is used to accommo-

date the flow of error sources out of the module. The block error character-

istic sets of the two blocks are all specified to be empty, and hence the
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Parameter list

Module

(M.)

C-
L

- module level potential propagator set

C, - module level source capable set
Cd - natural source capable definition set
c - pseudo source capable definition set

- j
Y (@j- module level flow mapping

Figure 4. An illustration for error environment model.

flow mappings are undefined.

A procedure can be defined to compute the module error characteristics

of a module M Since the parameter list of M expresses the interface

between M and its surrounding environment, the procedure starts with identi-

fying the parameter list of M. 

Definition 7. The passed parameter set P of a module M consists of all the

data items which appear in the formal parameter list of M and the function

name if M is a function.

Definition 8. The global parameter set h5 of a module M consists of all the
data items referenced in M 1 , each of which has a scope of effect over M J.

For a module which invokes other modules, the global parameter set of

the module must be augmented to include the passive elements in the parameter
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list.

Definition 9. The augmented global parameter sec J of a module M is defined

as ..' U[ U s1 , where each x E f[ U S ]-b 3 is a passive element
SMEI(M ) MsEI(M i )

which possesses a global scope of effect over M and/or its successors.

Definition 10. The parameter list I of a module M is defined as P U SJ

which is the interface between M. and its environment.

An element Ce in I. can propagate potential errors out of M and hence is

an element in d. if a' has been defined within M. The following definition

identifies the sat Cd, the set of elements in I which possess the error

property 3).

Definition 11. The natural source capable definition set 'd. of a module M

is defined as I fn [ U Ci1, where V denotes the vertex sei of the program

graph of MJ vi EVj

An element a in Ij may propagate potential errors into M, and hence is

a potential propagator candidate if the element has been used within M.

Definition 12. The potential propagator candidate set I is defined as

I n [vuV P i, where V denotes the vertex set of the program graph of M.

v.EV ~~ hr
To de~ermine if an element a' in ?j possesses the error property 1) or 2),

a' is treated as a primary error source and is the only element of 8 e, where e

is the propagation error source set of the entry block ve of MJ. Then, we

compute the intramodule error flow in Mi, and examine the propagation error

source set f, where f is the propagation error source set of the exit block

vf of MJ. If the set f is empty, a cannot propagate potential errors into

M However, if the set f is not empty, then a can propagate potential

errors into MJ, Furthermore, if c d n f is not empty, a can propagate poten-

tial errors to the elements in a~d iJ sf, which in turn flow out of M and

hence a' possesses the error property 1). Otherwise, if cd f is empty, a'

can propagate potential errors to the elements in f. But, all the elements

remain within Mi, and hence a possesses the error property 2). The following

definitions describe this process:

Definition 13. Let S = ?4 U [ U Ci], which denotes the set of all defini-

viEV ,

tions and potential propagator canAidates of MJ, Let S denote the set of

all subsets of S. For each element Of in Uj, the potential propagator
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identification function h: ?4 4 S is defined by

h(i) = (U Ff(p)Ip is a valid path from ve to vf], (9)

where

Ff(p) = [f(vfIf(vf 1l,...,f(vl, e = (c),...))tp = VeVl,...,vf]  (10)

Definition 14. The natural potential propagator set 19 of a module M con-

- di i
sists of the elements in the potential propagator candidate set UP in which

each element C1 satisfies the condition that Cd. n h(') # 0.
The elements in 6 thus possess the erroi property 1).

Definition 15. The pseudo potential propagator set c of a module Mj con-

sists of the elements in the potential propagator candidate set? J, in which

each element a satisfies the conditions that h(Q) 0 0 and Cd n h(a) = 0.

The elements in 0 thus possess the error property 2).)cj

Definition 16. The module level potential propagator set 9 of a module M

is defined as 0 U d J

The elements in i possess the error property I) or 2) and hence theyji

can propagate potential errors into M.

Recall that a pseudo source capable definition must be assigned for each

element in P in order to preserve the compatibility between the error char-

acteristics ol a module and the error characteristics of a block. The assign-

ment of a pseudo source capable definition must insure that it will not create

any erroneous secondary error sources within the invoking module.

Definition 17. The pseudo source capable definition set C is defined as

fg(o>lo E c ), where g is any arbitrary function which map4 0 into an element
cj

in c- in such a manner that if Mk invokes the set of modules I(Mk), then

u c ] n [ u (ci u Pi) = o (11)
M JEI(Mk) cj ViEVk

and

n C f0. (12)
M JEI(Mk) cJ

The function g can be realized by assigning a control item to represent

the pseudo source capable definition required for a pseudo potential
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propagator. Thus, the two conditions (11) and (12) can be automatically sat-

isfied and hence no checking is required.

Definition 18. The module level source capable set C is defined as C UC

The elements in C. can cause potential errors to exist within M or flow
J j

out of M Note that the elements in C-. can also be partitioned into two sub-
sets Cr and Cr according to their respective addressing capabilities.

rj r3

Hence, when(,, is assigned to C of a block v. in a module which invokes Mi.
j i I

the two subsets of (J are assigned to their corresponding subsets of Cis i.e.

C C ,and C eI-' . I
r r ri r

Definition 19. The module level flow mapping 9 4 i of a module M maps

each element p in of M to a set of elements in (j of M to denote that p

can propagate potential errors to these elements in a. The subset in a, in

which each element is an image of the element p in 9j through the mapping Yi,

is denoted by 9 (p). Similarly, the subset in Cj, in which each element is

an image of some elements in 9 through the mapping Y, is denoted by (19),

i.e.,5(19 ) = U 9 (p).

Based on Definitions 14, 15, and 17, the module level flow mapping on
each element p in 9 can be identified by the following two rules:

( d n h(p) for p E 1d (13)

(p)= (g(p)) for p E @c' (14)

where =j U d and n = .

Derivation of the module error characteristics of a module M requires

identification of the parameter list I of MF Given the parameter list I

the block error characteristics of all blocks in Mi, and the program graph of

Mi, the module error characteristics of M which are represented by, C -
and Y (19 ) can be derived by the following algorithm. The algorithm is based

on Definitions 11-19 which describe the properties and derivations of the

various error sets and mappings.

Algorithm 2. Algorithmic Module Error Characteristics Identification

Step I. Initialize the sets 9 and C, to be empty, and j(Pj) is undefined.
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C.'

Step 2. Create the set Cd by computing I n [U ci ]. Assign Cd to

i i ivi j
Step 3. Create the set 74 by computing I n U Pi ] .

vii 
i

Step 4. For each element e in 74j, let ve be the only primary error source

block and a be the only element in Ie" Trace intramodule error flow in M as

described in Algorithm 1. When the intramodule error flow in M stabilizes,

check If. If Sf 0 0 and f nad #0,add a to 1 and set Y%(a) = (5f n (?,"
If n c 0-but a = add a into and generate a control ite4.

Add this cAntrol item to C Jand set § (U) to contain the control item as the

only element. Continue processing the elements in t4j. When all are processed,

terminate.

It is clear that Algorithm 2 correctly identifies the module error

characteristics of a module based on Definitions 11-19.

The identification of module error characteristics accomplished by

Algorithm 2 in conjunction with the intramodule error flow provide the basis

for the calculation of the intermodule error flow. The intramodule error

flow model tracks the flow of potential errors within a module. The concept

of block error characteristics as given by Definitions 1-3 in conjunction with

the concept of module error characteristics as given by Definitions 16, 18,

and 19 underlie the ability of the intramodule error flow model to track the

potential error flow within a program. Thus, tracing the intramodule error

flow depends on the ability to track the flow of error sources across module

boundaries. This flow of error sources between modules constitutes the inter-

module error flow. Potential errors can propagate from a module M to the

modules which invoke Mj and the modules which are invoked by M . When there

exists the error flow from M to the modules invoked by Mi. potential errors

are said to propagate in a downward direction with respect to Mj. Similarly,

when there exists the error flow from M to the modules which invoke M,

potential errors are said to propagate in an upward direction with respect to

M. It is apparent that the downward intermodule error flow with respect to

MH must be identified before the upward intermodule error flow with respect

to M is identified; otherwise, the latter cannot be completely characterized.

The following lemma states the necessary criterion to determine the pres-

ence of downward intermodule error flow from M to Mk upon an invocation of

Min M.

Lemma 2. (Criterion for Downward Intermodule Error Flow). Suppose that 4 is
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invoked in M and vL is the module invocation block assigned in M for this

module invocation. Given the propagation error source set 6,' M, can propa-

gate potential errors to Mk via this module invocation ifdt Cki 0, where

Ok is the module level source capable set of Mk.

Proof. It nck = 0 implies that v, is incapable of internally generating
secondary error sources as a direct result of the intramodule error flow.

Therefore, all error sources contained in must pass through vt without

propagating to Mk . Thus, k na k # 0 is a sufficient criterion to determine
the presence of the downward intermodule error flow from M to M upon this

module invocation.

Error sources which propagate from M to Mk due to the downward inter-

module error flow are specified as the downward primary error sources of Mk -

A downward primary error source can be formally defined as follows:

Definition 20. Let Mk be invoked by Mi, and vt be the module invocation block

in M for this module invocation. Let e denote the propagation error source

set of the entry block ve in Mk. Given the propagation error source setdi

of each block vi in Mi. where vi E l (vt), a data item x is a downward pri-

mary error source and is added to LK if x E [ UI S] i nk, where 9. is
v El" (vt) k

the module level potential propagator set of H. Downward primary error

sources are utilized to identify the secondary error sources within a module

which is invoked by a module that is affected by the error flow.

In order to compute the complete intermodule error flow, the propagation

of error sources caused by the downward intermodule error flow must be supple-

mented with the propagation of error sources caused by the upward intermodule

error flow. The following lemma defines the necessary criterion which deter-

mines the presence of the upward intermodule error flow from Mk to an invoking

module upon an invocation of Mk.

Lemma 3. (Criterion for Upward Intermodule Error Flow). Given the propaga-

tion error source set f of the exit block vf in a module Mk, Mk can propagate

potential errors from itself to any module M which directly invokes Mk if

(f r d  0 0, where Cd is the natural source capable definition set of Mk.k = k

Proof. df n d r 0implies that Mk is incapable of propagating error

sources. Theretore, all error sources contained indf, if there are any,
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remain within Mk without propagating to M. Thus, d fl Cd k 0 is a suffi-

cient criterion to determine the presence of the upward intermodule error

flow from to M .

Error sources which propagate from M due to the upward intermodule error

flow are upward primary error sources of Mi, where M E I1 (). An upward

primary error source can be formally defined as follows:

Definition 21. Let Mk be invoked by Mi, and vi be the module invocation block

assigned in M for this module invocation. Let ci denote the propagation

error source set of vi. Given the propagation error source set cf of the exit

block vf in Mk, a data item x is an upward primary source and is added to LKi

if x E If ncd

Given the set F4 of modules which are involved in the initial modification

and the set dJ which consists of the blocks and their associated primary error

sources in each module in ?, an algorithm can be developed for tracing the
error flow from the initial modification to the other portions of the program

affected by the modification. Thus, this algorithm will trace the error flow

as a consequence of the modification. To accomplish this objective, the algo-

rithm must utilize the models of the intramodule error flow, the downward

intermodule error flow and the upward intermodule error flow previously

described. The intramodule error flow is utilized to trace the error flow

within a module to its exit point. The downward intermodule error flow is

then utilized to trace the error flow in invoked modules. The upward inter-

module error flow is then utilized to trace the error flow in invoking

modules. Tracing continues until the error flow stabilizes, i.e. no new error

sources are created.

Algorithm 3. Error Flow Tracing

Step 1. Define a set = '. 9' will contain the set of modules potentially
affected by the upward intermodule error flow. Define another set, 7" - 0,

which will be utilized to contain the modules affected by the error flow. For

each module Mj in the program, the propagation error source set of the entry

block in M and the set L are initialized to be empty, where L consists of

the blocks in M and their associated propagation error source sets.

Step 2. If 1? is empty, go to Step 4; otherwise, select a module from 7 and

delete it from f4. Let M denote the selected module. Apply the intramodule
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error flow tracing algorithm to trace the intramodule error flow in M. Add
the blocks and their associated error sources identified by the 'block identi-

fication criterion into Li.

Step 3. For each block vi contained in L', check if it is a module invocation

block. If vi is a module invocation block assigned for an invocation to Mk,

calculate the set .of error sources U - which currently flow into
vEl- (vi)

Then, check if (de) is properly contained in (vU )) fl if it
ek Il v M k fi

is, i.e., new error sources flow into Mk , then add Mk into M and Further-

more, the entry block is added into / while the primary error source set of

the entry block is updated by (de U U.1 dv'M n 9ki . Continue
Mk v'Ef (v i )

processing the elements in 5. When all are processed, go to Step 4.

Step 4. If M & is empty, i.e., the error flow stabilizes, then terminate. At

termination, *7? contains all of the modules affected by the error flow, and

the L' sets of the modules in 5? contain the blocks and their associated error

sources identified by the block identification criterion.

If P,& is not empty, then for each module in ?& , apply the upward inter-

module error flow criterion by letting M be a member of M& and calculating

((f)M n d . If the intersection is empty, i.e. no error sources currently

flow Irom MJ, then examine another module in 74&. Otherwise, add the modules

which directly invoke M into 5? and 5'7?. Furthermore, for each module Mk
which invokes Mi. add the blocks in Mk which are module invocation blocks

assigned for invocations to M into d. and update the sets of primary error

sources of these blocks by (df)M n d"

After all the modules in 5? have been examined, assign 5 to 77& and branch

to Step 2 to identify the net effect on the modules currently in 74?& and the

modules invoked by the members in M& ?
Theorem 2. Algorithm 3 traces the error flow as a consequence of a modifica-

tion.

Proof. The proof of this theorem is straightforward. Tracing error flow con-

sists of both upward and downward error flow tracing. The algorithm utilizes

the upward and downward error flow models previously developed for tracing

error flow among modules. Thus, the algorithm simply consists of repeated
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applications of the intramodule and intermodule error flow models until the

error flow stabilizes. It is noted that the error flow must stabilize since

the number of program modules and blocks is finite, the number of data and

control items is finite, and the propagation error source set of each block

is of finite size. Hence, to show that Algorithm 3 terminates, it is suffi-

cient to show that the algorithm terminates when the error flow stabilizes.

When the error flow stabilizes, the execution of Steps 2 and 3 will make

empty since no new downward primary error sources can be created by the

modules originally in F4. Then, the execution of Step 4 will keep F4 empty

since no new upward primary error sources can be created by the modules in 7
& .

At the end of Step 4, 7& will also become empty since 77& will be updated by

which is empty. The execution will then branch to Step 2 which will first

cheak if T4 is empty. Since F4 is empty now, the next step executed will be

Step 4. Because now we have the condition that 7& is empty, the algorithm

will terminate. This completes the proof of the theorem.

3.2 Logical Ripple Effect Analysis Technique

In the previous -ections, logical ripple effect has been analyzed through

the development of an intramodule error flow model and an intermodule error

flow model. In this section, a logical ripple effect analysis technique based

upon these models will be described. The logical ripple effect analysis tech-

nique consists of two phases.

The first phase is the lexical analysis phase which is performed on the

program upon completion of the initial modification. The lexical analysis
characterizes the potential error properties of the modified program. In

order to reduce the amount of effort required to develop the lexical analyzers

for several high-level programming languages, lexical analysis can be per-

formed in two steps. The first step is language dependent. During this step

different syntactic and semantic constructs unique to the programming language

utilized are analyzed in order to define program blocks, the control flow

between program blocks, the error characteristics of the program blocks, etc.

in a universal format which can be processed by step two of the lexical analy-

sis. The main function of step two of the lexical analysis phase is to

utilize the output of step one in order to compute the error characteristics

of the modules in the program, and hence characterize the potential error
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properties of the program.

The second phase of the ripple effect analysis technique consists of

tracing the logical ripple effect as a consequence of the modification. The.

input to the second phase consists of the output of the lexical analysis phase

in addition to the primary error sources involved in the initial modification.

3.2.1 Lexical Analysis Step One

In this section, step one of lexical analysis for the logical ripple

effect analysis technique will be described. Two assumptions imposed by the

error flow analysis models concerning data items must first be discussed. The

assumptions are that each data item possesses a unique memory address and that

each memory address corresponds to a unique data item. These assumptions are

made because the error flow analysis models treat memory in only a symbolic

sense, while most programming languages permit the programmer to declare data

items with the same data name, but different scopes of effect. This capabil-

ity can introduce address aliasing. One way to solve this problem is to keep

track of the scopes of effect for all data items. When the data name is

referenced in the program, the data item with the scope of effect for the

reference can be resolved. The reference can then be relabelled to reflect

which data item has the applicable scope of effect for the reference. Also,

some programming languages allow the user to declare several data names for

the same data item. The EQUIVALENCE statement in FORTRAN is an example. This

capability can introduce symbolic aliasing. This kind of symbolic aliases can
be identified by seeking out the syntactic constructs used by each language to

define the alias relation. Once identified, the symbolic aliasing can be

resolved by substituting only one element in the alias grouping for all other

elements in the group throughout the scope of effect of the aliases. Thus, it

is always possible to resolve all address aliasing and symbolic aliasing, and

hence satisfy the two assumptions for the error flow analysis models.

In this step, schemes, that are unique to each programing language to

derive the program graphs for the modules in the program and to identify the

definitions and usages from all types of statements and expressions, must be

established according to the syntactic and semantic constructs of the program-I ming language. During this step, a control item is assigned to represent each
control directive which is defined by a conditional or iterative statement.
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The items appearing in the control directive are treated as usages in orderI

to define the control item. In addition, an iterative statement, such as a

DO statement in FORTRAN, is assigned a block by itself. When the loop vari-

able is referenced within the scope of the loop, the control item assigned to

represent the control directive of the loop is treated as a usage instead of

the loop variable. Furthermore. the items which are utilized in evaluating

the index or pointer value when an element in a data structure is referenced

employing implicit addressing are always. treated as usages because they can

affect which element in the data structure is referenced.

During this step, module invocations in a module must also be identified.

A sequence of blocks is assigned in the invoking module for each module invo-

cation. The number of blocks in the sequence is determined by the type and

the formal parameter declaration of the invoked module. The error character-

istics of the block(s) in the sequence are not specified in this step. But,

the actual parameter list which appears in this module invocation is stored in

conjunction with the module invocation. For each module MH in the program,

the set J is defined from this module invocation information. Each element

in J is an ordered triplet (vi$Mk,P v ), where v i is the module invocation

block in MH. for an invocation of Mk , and P vis the set of blocks which are

used to establish the error flow between input or output parameters. The
connectivity relationship between modules in the program which completely

characterizes the call graph [12] is also constructed from the module invoca-

tion information in each module. The passed parameter set and global para-

meter set of each module are also constructed as a by-product.

During this step, the block error characteristics of a block must also be

identified. Upon entering a block vis the two sets P and C.i are initialized

to be empty and hence f(P(P1) is undefined. When the end of each statement in

v i is reached, an intrablock potential error flow identification algorithm

is invoked to derive the intrablock potential error flow within v i based on

the definitions and usages identified from the statement. By statement,

reference is meant to the semantic construct instead of the syntactic con-

struct. For example, the FORTRAN logical IF statement, IF(A.LT.B)A = A + 1

is treated as two statementsi IF(A.LT.B) and A = A + 1. Upon exiting from

the block vi, a block error characteristics identification algorithm is
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invoked to derive the sets Pi and Ci, and the flow mapping fi(Pi) based on

the intrablock potential error flow within vi. Note that the intrablock

potential error flow identification algorithm must operate on a statement-by-

statement basis in order to accommodate the appearance of a function reference

within a statement. The process to establish the potential error flow between

the invoking module and the invoked function must be carried out before the

potential error property of the statement containing the function reference

is identified. Hence, the scheme to identify the intrablock potential error

flow of a block must operate on a statement-by-statement basis in order to

handle this two-step process for a function reference. Thus, in this scheme,

when a function reference is identified in a statement, the function name is

treated as a usage in order to define the relevant definition(s) while the

actual input parameter list is stored in conjunction with the function refer-

ence. A sequence of blocks as previously described for module invocations is

then assigned for the function reference to establish the potential error flow

between the invoking module and the invoked function. Another new block which

is an immediate successor of the module invocation block specified for the

function reference is then entered. Upon reaching the end of the statement

which contains the function reference, the intrablock potential errJ flow

algorithm is then invoked to process the definitions and usages identified

from the statement.

In this step, it must also be determined whether or not an element in a

darta structure has been used or defined in a block. Thus, the index or

pointer value in each reference to an element in a data structure must be

maintained in a symbolic fashion. Note that a scheme must be devised to

correctly maintain the symbolic value of the index or pointer value in each

reference to an element in a data structure within a block. For example, con-

sider the case that, in block vi, A(J) is referenced first and then J is

incremented by one. Later, when A(J-I) is referenced in vi, we should be able

to tell that the two references are made to the same element in the data

structure A. If x is a data structure whose elements employ implicit addres-

sing, the element in x which is referenced by an index or pointer value x is

denoted as x'x. For the sake of consistency, a data or control item y which

employs explicit addressing is also denoted as y'y, except that the index y
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is assigned a character constant which denotes that y employs explicit

addressing.

A reference set R is defined to store the information about the data or

control items which have been referenced in a block. When a block is entered,

the set R is initialized to be empty. Each element in R is then represented

as an ordered triplet (r'r, DB_ r' UBror), where r'r is a control or data item

which has been referenced in the block, DBr r is the set of data or control

items which can propagate potential errors to r'r, and UBrir is the set of

data or control items to which r'r can propagate potential errors from outside

of v.. For each statement in the block, a definition-usage set DU is con-

structed from the definitions and usages identified from the statement. Each

element in DU can be expressed as an ordered pair (d'd, Udid) where d'd is a

definition and Udid is the set of usages which are utilized to define d'd.

It is noted that constants, e.g. numerical, Boolean, or character con-

stants, are not considered in our definition as data or control items. How-

ever, a data item may be defined by an expression in which only constants and/

or operators are involved. In this case, the usage set associated with the

data item would be empty. In order to denote that a data item has been

defined by an expression which involves only constants and/or operators we use

a pseudo item of the form c'c, where c is a unified character constant denot-

ing that the item is a constant. This pseudo item will be used in the

description of the two algorithms to identify the error characteristics of the

blocks.

Given the set DU constructed for a-statement contained in a block vi, and

the partially constructed set R for vi, the intrablock potential error flow

can be identified by the following algorithm:

Algorithm 4. Intrablock Error Flow Identification Algorithm

Step 1. If the set DU is empty, then terminate; otherwise, select an element

from DU. Let (d'd, Ud,d) be the element selected from DU. Delete the element

from DU.

Step 2. Check if d'd E U If d'd E Udld, set the flag f1 to be 'true';

otherwise, set fl to be 'false'.

Step 3. Search for an element (d'd, 'x', 'x') in R, where 'x' denotes 'don't

care'. If (d'd, 'x', 'x') E R, go to Step 5.

31



Step 4. If f1 = 'true', then add (d'd, (d'd), fd'd) to R; otherwise, add

(d'd 0, 0) to R. Go to Step 6.

Step 5. If DBd,d = 0 and fl = 'true', then add d'd to both sets DBd,d and

UB d d . If DBd,d 4 0 and f1 = 'false', then delete y'y from DBd,d and also

delete d'd from the set UByy, for each element y'l in DBd,d such that y 0 c.

Step 6. If Ud'd 0 0, then add c'c to DBd,d and go to Step I. If f = 'true',

then delete d'd from Udid.

Step 7. If Ud-d = 0, then branch to Step 1; otherwise, select an element from

U d d . Let u'ube the element selected fromUd'd . Delete the element from Ud d .

Step 8. Search in R for an element (u'u,'x','x'). If (u'u, 'x', 'x') E R,

then go to Step 10.

Step 9. Add (u'u, (, (d'd}) to R. Also, add u'u to DBd,d. Go to Step 11.

Step 10. If DB, = U 0, then add d'd to UBulu and also add u'u to DBdld;

otherwise, for each element y'. in the set DBuu1 add y'y to DBd,d, and

further if y # c, add d'd to UB,.

Step 11. Go to Step 7.

Theorem 3. Algorithm 4 identifies the intrablock error flow.

Proof. Given the set DU constructed for a statement contained in a block vj,

and the partially constructed set R for vi, we would like to show that Algo-

rithm 4 correctly identifies the intrablock error flow in vi up to the end of

the statement.

The algorithm processes the elements in DU sequentially. For each ele-

ment (d'd, Udid) in DUI, the definition d'd is processed first. Then, each

element in Udid is processed one by one. Thus, it is sufficient to show that

the algorithm correctly identifies the intrablock error flow in vi after each

definition and all the usages used to define the definition have been pro-

cessed.

Let (d'd, U d d ) be the element selected from DU at one stage of execution

To process the definition d'd, the usage set associated with d'd will be

searched first to determine if d'd E Ud,d. If d'd E U dd, i.e., d'd is

currently defined by a usage of itself, the flag f1 is set to be 'true'.

Otherwise, f is set to be 'false'. Then, the set R is searched to determine

if (d'd, 'x', 'x') is contained in R. The following two cases have to be

considered.

32



Case 1. (d'd, 'x', 'x') R, i.e., the definition to d'd is the first refer-

ence to d'd in vI. In this case, if f = 'true', we should add (d'd, fd'd),

{d'dl) to R because d'd can propagate potential errors to itself due to this

definition by a usage of itself. If f = 'false', we should add ((d'd}, 0, 0)

to R because d'd can not propagate potential errors to any items looking at

this point, and the set of items which can propagate potential errors to d'd

due to this definition will be identified when Ud,d is processed later.

Case 1 is handled by the Step 4 in the algorithm.

Case 2. (d'd, 'x', 'x') E R, i.e., the item d'd has been previously refer-

enced in v In this case, if DB d'd = 0, i.e. d'd has not been previously

defined in v., and f = 'true', we should add d'd to both DBd,d and UBd,d,

since d'd can propagate potential errors to itself due to this definition by

a usage of itself. Now, if DBd,d # 0, i.e., d'd has been previously defined
in v., and f = 'false', then the elements in DBd'd can no longer propagate

potential errors to d'd due to this redefinition of d'd. Hence, for each ele-

ment y'y in DBd,d and y 0 c, we should delete y'y from DBd,d and also delete

d'd from UBy I For the other two combinations, i.e., either DBd,d = 0 and

f I= 'false', or DBd,d # 0 and f1 = 'true', nothing has to be done at this

point, because d'd can still propagate potential errors to the elements in

UB yz through previous usages of d'd, and the elements in DB can still

propagate potential errors to d'd. Case 2 is handled by the Step 5 in the

algorithm.

For both cases, if Ud,d - 0, i.e., d'd is defined by an expression in

which only constants and/or operators are involved, we should add c'c to

DBd,d in order to denote that d'd is defined by an expression which evaluates

a constant value, and branch to process the next element in R. If f = 'true',

we should delete d'd from Udid, since both the definition and usage of d'd

have been processed. Step 6 in the algorithm describes this operation, and

Steps 2-6 process a definition d'd.

Now, for each element u'u in U we know that u'u # d'd, since d'd has

been deleted from Ud,d if it was originally contained in Ud,d If (u'u, 'x'

'x') f R, then we should add (u'u, 0, (d'd)) to R, since u'u-is currently used

to define d'd and hence u'u can propagate potential errors to d'd. The Step 9

in the algorithm handles this case. If (u'u, 'x', 'x') E R, then we have to
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check if DBu = 0. If DBUlu  0 , i.e., u'u has not been previously defined

in vi, then we should add u'u into DBd,d and also add d'd into UB since

uu can propagate potential errors to d'd. If DBu 0, the elements in

DB , u which can propagate potential errors to u'u can also propagate potential

errors to d'd through the usage of u'u in defining d'd. Hence, for each ele-

ment y'y in DBuu, we should add y'y to DBd,d; and if y # c, we should add

d'd to UB, . Note that we do not have to add d'd to UBUO, since the usage

of u'u appears after u'u has been defined in vi and hence u'u cannot propagate

potential errors from outside of vi to d'd except when u'u can propagate

potential errors from outside of vi to u'u. In that case, u'u should have

already been in U uu, and hence d'd should have been added to UBulu when we

add d'd to UBy, for each y'y in UB , such that y 0 c. Step 10 in the

algorithm handles the case that (u'u, 'x', 'x') E R. Steps 7 to 11 process a

usage ulu which is used to define d'd.

Thus, we have shown that the execution of Steps 2-6 and the iterations of

Steps 7-il (each iteration for a usage used to define the definition) cor-

rectly identifies the intrablock error flow based on the set R, the definition

and its associated usage set. This proves that Algorithm 4 correctly identi-

fies the intrablock error flow based on the sets R and DU.

To show that Algorithm 4 terminates, we observe that each execution of

Step I decrements the cardinality of DU by one. To process an element

selected from DU, Steps 2-6 will be executed only once to process the defini-

tion. Each iteration of Steps 7-11 will decrement the cardinality of the

usage set associated with the definition. Since each usage set is of finite

size, it takes a finite number of iterations to process any usage set.

Besides, it takes a finite number of steps to do searching or checking. Hence,

it takes a finite number of steps to process an element in DU, and to process

the whole set DU. Thus, Algorithm 4 terminates. This completes the proof of

the theorem.

Upon exiting from a block vi, the reference set identified for the block

is processed by the block error characteristics identification algorithm to

derive the error characteristics of the block. Given the reference set R

identified in vi, and the two sets Pi and Ci which were initialized to be

empty upon entering the block, the block error characteristics identification
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algorithm can be expressed as follows:

Algorithm 5. Block Error Characteristics Identification Algorithm

Ste 1. Select an element (r'r, DBrr , UB r'r) from the set R. If R is empty,

then terminate. Delete the element from R.

Step 2. If DBrr is not empty, then add r into Ci . If UBror is not empty,

then add r into Pi and let r map to the set (y) through the flow mapping f(r),

where y'y is an element in UBrI.

It is obvious that Algorithm 5 terminates. For each element (r'r, DBrer,

UBrer) selected from R, if DB rr is not empty, i.e., r'r has been defined in

vi, then r should be added to Cis since it can cause potential errors to exist

in vi. Furthermore, if UB rr is not empty, i.e., r'r can propagate potential

errors to the elements in UBrr from outside of v., then r should be added to

Pi and"it should map to the set (y) through the flow mapping f(r), where y'y

is an element in UBr r. Thus, we conclude that Algorithm 5 terminates and

correctly identifies the error characteristics of the block v. based on the1

set R constructed for vi .

3.2.2 Lexical Analysis Step Two

The main function of this step of the lexical analysis phase is to

utilize the output of Step One in order to compute the error characteristics

of the modules in the program, and thus to characterize the potential error

properties of the program.

In this phase, the reverse invocation order is derived from the program

call graph which was constructed in Step one of lexical analysis. Then, the

error characteristics for all modules except the initial entry module are

defined following the reverse invocation order. After the error characteris-

tics of a module M are defined, the error characteristics of the blocks in

other modules which are assigned for invocations to M are then updated.

Recall that a sequence of one to three blocks may be assigned for each module

invocation. The module error characteristics of M are then assigned to the

block error characteristics of the module invocation block in "k assigned for

an invocation to Mi. where M E I(Mk). The formal parameter list of M and

the actual parameter list in the module invocation are then scanned to derive

the block error characteristics of the input parameter error flow mapping

block. The definition-usage set is first constructed by treating each actual
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input parameter as a usage which is used to define its corresponding formal

input parameter. Then, the intrablock error flow identification algorithm is

invoked to derive the set R from the set DU. Finally, the block error char-

acteristics of the input parameter error flow mapping block can be derived

from the set R by the block error characteristics identification algorithm.

The block error characteristics of the output parameter error flow mapping

block can also be derived in the same manner except that the definition-usage

set is constructed by treating each formal output parameter as a usage which

is used to define its corresponding actual output parameter.

3.2.3 Tracing Phase

In this section, the tracing phase of the logical ripple effect analysis

technique will be described. Upon completion of lexical analysis of the modi-

fied program, this phase is entered to compute the ripple effect caused by the

initial modification. First, the primary error sources in the blocks and

modules which are involved in the initial modification must be identified.

Then, Algorithm 3 is applied to trace the error flow in the program utilizing

the primary error sources as starting points. Finally, a logical ripple

effect criterion is used to identify the logical ripple effect based on the

output of Algorithm 3. In this section, the logical ripple effect identifi-

cation algorithm and a process for identifying primary error sources will be

presented.

Recall that Algorithm 3 determines which definitions, blocks, and modules
are logically affected by the propagation of potential errors. However,

Algorithm 3 does not determine if the definition, block, or module actually
requires additional maintenance. For example, a module M i requires no addi-

tional maintenance despite the fact that it is affected by intermodule error

flow if all the error sources identified in M are just passing through M

to the modules invoked by M without propagating potential errors within Mi.

A criterion is thus needed to distinguish between the modules which are

actually affected by logical ripple effect and those which are not. Let G'

be a subgraph of G which is derived by deleting from V all the blocks in M

which are assigned for module invocations in M . Informally, a module M is

affected by logical ripple effect if there exists at least one block in G'

which is affected by error flow. The modules in a program which are affected
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by logical ripple effect can then be identified based on the following

lemmua:

Lemma 4. (Logical Ripple Effect Criterion). Given the propagation error

source set ~iof each block vi in a module M the module M is affected by

logical ripple effect from the initial modification if there exists a block

V k E G' such that flS k# )00.

Proof. (S # 0 implies that M is suspected of being affected by logical
kj

ripple effect from the initial modification. £ k n c k =0 infers that Vk is

unaffected by the logical ripple effect, but does not imply that M is also

unaffected. However,i ~k n c k =0 .for each block vk in Giimplies that all the

blocks inM which are not assigned for module invocations are not affected

by the error flow. Thus, Mis not affected by the logical ripple effect

because all the error sources which propagate in M. are just passing through

vk E to shuch nokdb Hence, the criterion that there exists a
vk Gi schthatl k nl ck 0 0 is sufficient to determine that MH is affected

by the logical ripple effect of the initial modification.

In an analogous manner, a block may require no additional maintenance

despite the fact that it is affected by the error flaw. Thus, a criterion is

needed to eliminate the blocks which are not affected by the error flow.

Lemmna 5. (Block Elimination Criterion). If a module MIk is identified by the

logical ripple effect criterion as not being affected by the logical ripple

effect, then all 1the blocks in Mk require no additional maintenance. Further-

more, if M E I- M) and )vP E J where v i is the module invocation
i v

block assigned in M for an invocation of M4k then the block v i and the blocks

in P vrequire no additional maintenance.

.Proof. The fact that M.k is identified as not being affected by the logical

ripple effect implies that MKdoes not contain any blocks affected by the

intermodule error flow that would disturb its consistency. Hence, all the

blocks in 14
Krequire no additional maintenance.

If MH invokes Mkand vi is a module invocation block assigned for an

invocation of Mkin M ,then tebokv adhelcsin which are

assigned for the invocation require no additional maintenance ecause the

error flow does not disturb .k Is consistency, and hence the consistency of

these blocks is not disturbed.
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Let 9/ denote the set of modules which are affected by the logical ripple

effect. For each module M in 9 let the set L R consist of the blocks in M4

which are affected by the logical ripple effect and their associated error

sources. Given the set T? of the modules affected by the error flow and the

sets L' of the modules in 74 identified by Algorithm 3, the logical ripple
effect identification algorithm which derives the set e and the se ts LRi of
the modules in e can be presented as follows:

Algorithm 6. Logical Ripple Effect Identification Algorithm

Step 1. Initialize the set e to be empty. Apply the logical ripple effect

criterion to each module in 7? If a module is identified as affected by the

logical ripple effect, then add it into e't. After all the modules inM * have

been examined, the set 9 contains all the modules affected by the logical

ripple effect.

Step 2. Calculate the set of modules which are affected only the error flow,

but not by the logical ripple effect as V?? -9'. For each module T? in 9,
assign L ito LRF For each module M.k in -* VP delete the blocks with their

associated error sources which are assigned for invocations to Mk from the
respective L1  where M invokes and is a member of

j Mk 9
It is clear from Lemmas 4 and 5 that Algorithm 6 correctly computes the

logical ripple effect based on the intermodule error flow identified in the

program.

Thus, maintenance personnel should check the blocks and their error
R

sources in the L sets of the modules in 9 to insure their logical consis-
tency with the initial modification.

Before the logical ripple effect identification algorithm can be applied,

it is first necessary to identify all of the primary error sources involved

in the initial modification. These primary error sources serve as the start-

ing points to trace the error flow in the program. A primary error source can

be defined as a data or control definition which is directly affected or

implicated by the initial modification. A directly affected primary error

source is a definition whose value or control condition associated with it

was directly changed by the initial modification. Implicated primary error

sources are the data or control items which are defined with direct or

indirect usages of some directly affected primary error sources of the block.
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Implicated primary error sources are required because the ripple effect analy-

sis technique starts tracing logical ripple effect from the successor blocks

of the blocks which are in~volved in the initial modification. Hence, the

maintenance programmer must identify the definitions affected by the intra-

block error flow within the primary error source blocks. If a definition

employing explicit addressing is identified as a primary error source and is

later redefined in the block without usages of any affected data items, then

the definition can no longer propagate potential errors to other blocks, and

hence must be removed from the set of primary error sources of the block.

Another type of complication arises when the control flow is changed due

to the deletion of some code. Since the ripple effect analysis technique is

based on the potential error properties of the modified program, some poten-

tial errors may not be traceable due to the change in control flow. In order

to solve this problem, the maintenance personnel must specify the deleted

definitions as directly affected primary error sources for the blocks in the

modified program to which the deleted code could transfer control flow.

These blocks of the modified program should then be specified as primary error

source blocks.

Based on the above discussion, the emphasis here will be on how to iden-

tify the directly affected primary error sources due to a program modification

To illustrate this, let us consider the following modifications:

Suppose that the data items used to define a control condition were changed,

e.g. a loop termination condition was modified. The control definition

associated with this control condition is then specified as a directly

affected primary error source of the block, to which the control definition

is assigned.

*Suppose that a data definition was changed, added, or deleted in a block.

The definition is then specified as a directly affected primary error
source of the block.'*Suppose that parameter x was replaced by y in a module invocation. If the

corresponding formal parameter f is an input parameter, then f is specified
as a primary error source of the input parameter error flow mapping blockIassociated with this module invocation. If f is an output parameter, then

x and y are both specified as primary error sources of the output parameter
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error flow mapping block.

" Suppose that a module invocation which invokes a newly added or an existing

module was inserted into the program. The invoked module's natural source

capable definitions are then specified as primary error sources of the

module invocation block associated with this newly added module invocation.

" Suppose that a module invocation which invokes Mk was deleted from a module

M J*The directly affected primary error sources are then Mk is natural

source capable definitions, except that the formal output parameters should

be replaced by their corresponding actual output parameters which has

appeared in the deleted module invocation.

Utilizing these guidelines, the set T4~ of modules which are involved in

the initial modification and the sets &Pd 's which consist of the blocks and

their associated primary error sources in the modules in F4? can then be defined

by the maintenance personnel and input to the intermodule error flow tracing

algorithm.

3.3 Implementation Considerations for a Restricted JOVIAL Language

The logical ripple effect analysis models and the logical ripple effect

analysis techniques previously described are intended to be language-indepen-

dent and system-independent. We have left out the descriptions of some

important functions which must be performed in the lexical analysis phase due

to their language dependence. In this section, we will describe the overall

structure of a technique which aims at performing the logical ripple effect

analysis on programs written in a restricted JOVIAL language. We will also

describe a scheme which derives the program graphs associated with program

modules, and a scheme which identifies definitions and usages from various

syntactical constructs allowed in our restricted JOVIAL language.

3.3.1 Restricted JOVIAL

Our restricted JOVIAL retains the basic and most desirable features of

the JOCIT JOVIAL. Programs written in our restricted JOVIAL can ultimately

carry out all the functions supported by JOCIT JOVIAL. Our restricted JOVIAL

imposes some limitations on the execution control transfer mechanisms allowed

in JOCIT JOVIAL. These limitations are described as follows:

1) Statement names and module names cannot be passed between modules. A

module is defined to be a separately invokable piece of the software
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system having a single entry point and a single exit points. If state-

ment names and modules names can be passed between modules, then the

invoked module may have multiple entry or multiple exit points. However,

current programming practices try to avoid this feature because it leads

to bad programming style. Thus, it can be justified that statement names

and module names should not be passed between modules.

2) Switches which can cause execution control to be transferred depending on

the values of data items or index expressions are not allowed in our

restricted JOVIAL since they can also complicate the execution control and

lead to bad programming style.

3) The TEST statements which provide a special loop exit mechanism are also

not allowed in our restricted JOVIAL.

3.3.2 System Structure

The system to perform the logical ripple effect analysis on restricted

JOVIAL programs can be decomposed into three automated subsystems: a Text

Analyzer, a System-Level Lexical Analyzer, and a Logical Ripple Effect Calcu-

lator. A logical ripple effect analysis data base is utilized to maintain all

the information required for logical ripple effect analysis.

A text is defined to be an entity which is compiled independently. In

JOVIAL, a text can be a compool, a main program or a subprogram; i.e. any

START-TERM sequence. Each text in the modified program must be processed by

the Text Analyzer in the same order as defined by the compilation process of

the modified program, i.e. compools must be processed prior to the main and

subprograms.

The main functions performed by the Text Analyzer are:

1) Resolve address conflicts and establish symbol tables.

2) Identify the global and passed parameter sets of the modules defined in

the text.

3) Identify the blocks with their respective block error characteristics in

each module defined in the text.

4) Derive the program graph associated with each module defined in the text.

5) Identify the immediate successor and predecessor modules of each module

defined in the text.
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The Text Analyzer can be devised as a two-pass processor to lexically

analyze a text. The Pass One of the Text Analyzer will perform the functions

1) and 2). The Pass Two then performs the functions 3), 4) and 5). Hence,

correct block error characteristics can be identified since address conflicts

have been resolved first.

A reformed source text output will be produced by the Text Analyzer after

a text has been processed. The reformed source text output is basically the

card image of the source text input except that all address conflicts have

been resolved. Hence, some data item names may be relabelled. Furthermore,

some block indicators which denote the boundaries of the blocks, and control

definition indicators which denote the control items assigned for conditional

or FOR clauses may be inserted into the reformed source text output for a main

or subprogram which contains executable statements. These indicators are

provided to the maintenance personnel for the purpose of identifying primary

error sources involved in the initial modification to the text.

The functional step which performs the text-level lexical analysis on

each text in the modified program can be illustrated by Figure 5.

After all the texts in the modified program have been processed by the

Text Analyzer, the System-Level Lexical Analyzer is invoked to perform the

system-level lexical analysis. The main functions performed by the System-

Level Lexical Analyzer are:

1) Derive the reverse invocation order based on the call graph which was

constructed during the text-level lexical analysis and represented by the

predecessor-successor relationships among modules.

2) Derive the module error characteristics for each module (except the main

module) in the modified program following the reverse invocation order

obtained beforehand.

3) For each module invocation block, update its error characteristics which

were unspecified during the text-level lexical analysis by the module

error characteristics of the invoked module.

The System-Level Lexical Analyzer performs the functions mentioned above

based on the information contained in the Logical Ripple Effect Analysis Data

Base. A report which indicates the natural source capable definitions iden-

tified for respective modules is produced by the analyzer to aid the
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Figure 6. System-level lexical analysis step.

affected by the logical ripple effect. The logical ripple effect calculation

functional step can be illustrated by Figure 7.

3.3.3 Some Important Aspects of the Text Analyzer

As we described in Section 3.3.2, the Text Analyzer performs the text-

level lexical analysis. The most challenging functions performed by the Text

Analyzer are: to identify the blocks with their respective error character-

istics in each module, and to derive the program graph associated with each

module defined in the text being processed. In this section, we will present

the schemes which can be utilized to derive the program graph associated with

a module, and to identify the definitions and usages from various syntactical

constructs in our restricted JOVIAL.

3.3.3.1 Derivation of the Program Graph

A program block is defined to be the maximal sequence of computer state-

ments having the property that each time any statement in the sequence is

executed., all are executed; except that when a module invocation is

44



from system-level
lexical analysis

Logical Ripple
Logical Ripple Effect Analysis

Effect Calculator Data Base

Logical ripple

effect report

Figure 7. Logical ripple effect calculation step.

encountered, a sequence of one to three blocks may be assigned for this invo-

cation. However, some variations on the maximal condition are made to facili-

tate implementing this technique. A program graph associated with a module

can be represented by the immediate predecessor-successor relationships among

the blocks in the module.

The scheme to derive the program graph can be described by a set of block

identification conditions which provides a criterion on how a program module

should be partitioned into program blocks. These block identification condi-

tions should identify all control flow changes other than those in sequential

control flow as well as other special conditions which facilitate the tracing

of the error flow.

For our restricted JOVIAL, nineteen block identification conditions have
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been identified. In the following description, sequential control flow among

blocks is assumed unless it is stated otherwise. The block identification

conditions are described as follows:

1) The module declaration header constitutes the entry block of the module.

The first block in the module is identified upon entering the body of the

module.

2) After reaching the end of the module body, a new block is identified as

the exit block of the module. The exit block contains no executable

statements. However, it is required for intermodule error flow tracing.

3) A GOTO statement which references a statement name should be the last

statement in a block. The block which contains the statement bearing the

name referred by the GOTO statement is the immediate successor of the

block containing the GOTO statement.

4) A RETURN statement should be the last statement in a block. The exit

block of the module is the immediate successor of the block which contains

the RETURN statement.

5) A STOP statement should be the last statement in a block. if the module

is an external close, the exit block of the module is the immediate suc-

cessor of the block containing the STOP statement; otherwise, the block

which contains the STOP statement has no immediate successor.

6) A statement bearing a name should be the first statement in a block.

7) An input statement should be the first statement in a block. This condi-

tion is required to facilitate tracing the error flow since an inconsis-

tent input file can propagate potential errors to the data items in the

input list.

8) An output statement should be the last statement in a block. This condi-

tion is also required to facilitate tracing the error flow since the data

items in the output list can cause the output file to be inconsistent.

9) A FOR clause should constitute a block by itself.

10) The end of the iteratively executable simple or compound statement asso-

ciated with a FOR clause should be the end of a block. The block ended

by this condition has two immediate successors: the block which contains

the corresponding FOR clause, and the block which follows the end of the

FOR statement. Combining the Conditions 9) and 10), the control flow
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among the blccks identified for a FOR statement can be illustrated by

Figure 8.

O IThe block which contains
F I the FOR clause

| The sequence of blocks

Ii which contains the

iteratively executable

simple or compound

statement

The block which contains

the statement following

the FOR statement

! I

Figure 8. An illustration for block segmentation

for a FOR statement

11) An IF clause should be the end of a block. The block ended by the IF

clause has two immediate successors: the first block identified for the

conditionally executable statement associated with the IF clause, and the

block which follows the end of the IF statement.

12) The end of the conditionally executable statement associated with an IF

clause should be the end of a block. If the block is also ended by

Condition 3), 4) or 5), then the block cannot transfer control to the

block following the end of the IF statement. Combining the Conditions

11) and 12), the control flow among the blocks identified for an IF

statement can be illustrated by Figure 9.

13) An IFEITH clause should be the end of a block. The block ended by this

condition has two immediate successors: the first block identified for
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Figure 9. An illustration for block segmentation
for an IF statement.

the conditionally executable statement associated with the IFEITH clause,

and the block which contains the first ORIF clause in this IFEITH-ORIF's

complex construct.

14) An ORIF clause should constitute a block by itself. This block has two

immediate successors: one is the first block identified for the condi-

tionally executable statement associated with the ORIF clause, and the

other is the block which contains the next ORIF clause in the IFEITH-

ORIF's complex construct if there is one, or the block which contains

the end of the construct.

15) The end of the conditionally executable statement associated with an

IFEITH or ORIF clause should be the end of a block. If the block is also

ended by Condition 3), 4) or 5), then the immediate successor of the
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block is determined by that condition. Otherwise, the block which con-

tains the end of the IFEITH-ORIF's construct is the immediate successor

of this block.

16) The END bracket, which denotes the end of the IFEITH-ORIF's construct,

should be the first statement in a block. Combining the Conditions 13)

to 16), the control flow among the blocks identified for an IFEITH-ORIF's

construct can be illustrated by Figure 10.

17) A COTO statement which invokes a close should constitute a block by

itself. The block is the module invocation block for this close invoca-

tion.

18) A block is identified for a function reference without passed parameters.

The block is the module invocation block. For a function reference with

passed parameters, a sequence of two blocks is identified for the func-

tion reference, where the first block is the input parameter error flow

mapping block, and the second block is the module invocation block. The

immediate successor of the module invocation block, for both cases, is

the block which contains the statement involving the function reference.

19) A block is identified for a procedure call statement which involves no

passed parameters. The block is the module invocation block. A sequence

of three blocks is identified for a procedure call statement if it

involves passed parameters.

The set of block identification conditions forms a criterion for deriving

the program graph for our restricted JOVIAL.

3.3.3.2 Identification of Definitions and Usages

The error characteristics of a block are derived from the definitions,

usages and their relationships identified in the block. The scheme which

identifies definitions and usages from various syntactical constructs of a

programmning languages is essential in correctly identifying block error char-

acteris tics.

The scheme is described here by a set of rules which provide the cri-

terion on which data or control items should be identified as definitions or

usages from various syntactical constructs. Before we state the rules for

our restricted JOVIAL language, we emphasize two rules which are general to
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most programming languages.

1) When a loop control variable is referenced within the scope of the loop,

the control item which is assigned to represent the control directive of

the loop execution condition, instead of the loop control variable, is

treated as a usage used to define the relevant definition(s).

2) The data or control items which are used to dynamically evaluate the

address of the referenced element in a data structure are always treated

as usages.

For our restricted JOVIAL language, except the exchange statements, the

rules which determine which data or control items should be identified as

definitions or usages are stated as follows:

1) In general, the first data item which appears in an assignment statement

*is the definition while other data or control items appearing in the

statement are usages used to define the definition, except when a func-

tional modifier variable (BIT or BYTE) is assigned new value by the

assignment statement. In that case, the first data item enclosed by the

parentheses in defining the functional modifier variable is the definition

while other data or control items appearing in the statement are usages

used to define the definition.

2) In an input statement, the input file is a usage which is used to define

all the data items which appear in the input list, except those which

also appear in some index list. A data or control item which appears in

the index list when an element in a data structure is referenced is a

usage used to define the referenced compound data item.

3) In an output statement, the output file is a definition, while the data or

control items appearing in the output list are usages used to define the

definition.

4) In an IF, IFEITH, ORIF, or FOR clause, the control item assigned to repre-

sent the control directive of the clause is the definition while the data

or control items appearing in the control directive are usages used to

define the definition.

5) In an ENCODE or DECODE statement, the data items appearing on the right

hand side of the equal sign are definitions, except those which also

appear in some index list. In that case, the item appearing in an index
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list is a usage used to define the referenced compound data item.

Furthermore, the data or control items which appear on the left hand side

of the equal sign are usages used to define all the definitions.

6) For a module invocation with passed input parameters, the formal input

parameters are definitions, while the data or control items appearing in

the actual input parameter list are usages used to define their corre-

sponding formal input parameters.

7) For a module invocation with passed output parameters, the formal output

parameters are usages used to define their corresponding actual output

parameters, except those actual output parameters which also appear in

some index list. In that case, the item appearing in an index list is a

usage used to define the referenced compound data item.

8) For a function reference to any intrinsic function allowed in JOVIAL, the

data or control items appearing in the actual parameter list are usages

used to define the relevant definitions which are determined by the state-

ment or expression containing the function reference.

9) For a procedure call statement which invokes the REMQUO intrinsic proce-

dure in JOVIAL, all the data or control items which appear in the actual

input parameter list are usages used to define the data items which appear

in the actual output parameter list, except those actual output parameters -

which also appear in some index list. In that case, the data or control

item which appears in an index list is a usage used to define the refer-

enced compound data item.

The rules described above provide the criteria on which data or control

items should be identified as definitions or usages from various syntactical

constructs in our restricted JOVIAL.

3.4 Conclusion

A logical ripple effect analysis technique based upon intramodule and

intermodule error flow models has been developed, and the implementation of

this technique also discussed. The importance of this technique lies in its

capability to trace the logical ripple effect in a program as a consequence

of a modification, and thus help maintenance personnel better understand the

scope of the ripple effect of their changes on the program.
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Much work still needs to be done in this area. Our immediate objective

is to expand the logical ripple effect analysis technique to handle recursion.

The technique will also be improved in order to refine its current worst case

logical ripple effect analysis, and to enhance the efficiency and capacity for

full automation of the technique.

4.0 GENERATION OF SPECIFICATION FOR PROGRAM M(DIFICATIONS

This part of the work is to describe a given program modification for an

existing program. This description must be unambiguous, easy to understand,

and easy to construct. All of this implies that we must have a clear and con-

sistent way of describing a program. Therefore, we need a representation of

the program that identifies all of the program elements and the relations

among those elements in a well-defined way. This should not only allow a

clear description of proposed modifications to the existing program, but also

aid the programmer in understanding the function and structure of the program.

It is our intention to formally describe a given program modification based on

a formal program model. Here, we outline some program abstractions (e.g.

control flow, data flow, execution flow, and data object structure) and some

operations on the abstractions which could be used to formally describe a

given program modification. In order to illustrate our approach, we use the

abstractions to describe two FORTRAN subroutines. We also describe how our

approach can be used to specify a modification to one of the subroutines.

To date, our approach has not been formalized. We only present an out-

line and some informal definitions here. The four abstractions which we will

describe have neither been formalized, nor incorporated into a unified model.

During the development of our research, we have come to the conclusion that

a formal and unified model of an existing program is necessary for the formal

specification of a given program modification. Further research needs to be

done to formally define such a model.

4.1 Some Abstractions

We define an abstraction as a representation of the inherent properties

of something from the actual object to which they belong. The "object" to be

described is the existing program and any abstraction of the program will be

a representation of some aspect of the program.-
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7 There are four aspects of a program which we identify: control flow,

data flow, execution flow, and data object structure. In the following sec-

tions, we will discuss the construction of an abstraction for each of these

four aspects.

4.1.1 Previous Uses of Program Abstractions

Various types of abstractions have been used to model different aspects

of a program. The most common abstraction is the control-flow graph, often.

called the program graph. The vertices represent statements or specific

groupings of statements and branches represent transfer of control. Paige

[13,14] has described the basic concepts as well as possible definitions of a

vertex and the ways of partitioning program graphs according to the vertex

definition used. Pratt [15-171 has extended the concept of the program graph

to hierarchical relationships within programming languages and has also

described a language for manipulating the hierarchical graph. Kunii, et al.,

[18-201 have built on the ideas of Pratt and others by describing recursive

graphs (RG)--where branches as well as the vertices are decomposable. The

control-flow graph has been used in the theory of global program optimization

[21] and to aid in the restructuring of existing software [22-24]. A good

discussion of control-flow analysis has been given by Hecht [25].

There have been other abstractions used to describe aspects of a program.

Sholl and Booth [26] have described the use of computation structures to model

the performance of a software system. A computation structure consists of two

graphs, a control-flow graph and a data-flow graph. The data flow

describes the possible movement of data objects within the software system.

However, the graphical representation used is cumbersome. Kodres [27] has

introduced data-flow graphs as a tool for the analysis of real-time systems.

The graphs are used in test case generation, error analysis, analyzing paral-

lel processing, and in program verification. Other abstractions used to model

the data flow employ a program graph and other information to show where a

data object is defined (set) and referenced; this information can be in the

form of sets which are associated with vertices in the program graph. Fosdick

and Osterweil [28,291 have used this approach to model the data flow within a

program. Program optimization techniques [211 use a similar approach. Func-

tional Programming [301, on the other hand, partitions a program into distinct
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execution paths. This allows the conditions associated with a particular

path to be more explicitly described.

Abstractions which describe data objects have also been used. However,

most data object descriptions have been in terms of functions 131-34]. Earley

[35] and Honig and Carlson [36] have attempted to formalize the description of

the structure of aggregate data objects, independent of a particular imple-

mentation language. Jones [37] has used trees to model data types in conjunc-

tion with abstract data type, but not the structure of the data object.

There exist a number of different design methodologies, each using some

form of program model upon which the design is built. Some methodologies,

such as HOS [381 and SREM [39-41], use formally defined program models; others,

such as SADT [42] and the Jackson Design Method [431, use more informal pro-

gram.models. SARA (System ARchitecture Apprentice) is a methodology which

uses a Graph Model of Behavior (GMB) with the Dennis Data Flow (DDF) model

to describe and analyze multilevel concurrent systems [44]. None of these

methodologies are intended for the modelling of already existing software,

however.

The program model used by HOS cannot be used to describe a program other

than the one designed using the HOS methodology. To a limited extent, the

program model used by SADT can be used to describe existing software, but the

model is not formal and is therefore not suited to our purposes. PSL/PSA [45]

uses a program model that is unable to describe relationships between levels

of abstraction and it is unable to describe data structure. R-nets, used by

the SREM methodology, comes closest to satisfying our requirements for the

program model, yet it lacks a formal means of describing aggregate data struc-

ture in a well-defined way. Ramamoorthy and So [46] have given a good overview

of the abstractions used for requirements and specifications of software

systems.

4.1.2 Control Flow

The purpose of this abstraction is to describe all of the ways in which

control can be transferred between statements within the program. Normally,

the abstraction is a directed graph [13,141, where branches represent transfer

of control and vertices represent sections of program code. In graphic form,

it allows the programmer to get an overview of possible "flows" within the
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program.

The type of control-flow graph is determined by the type of vertex. We

identify three kinds of vertices for the control-flow graph: a module, a

block, and a statement. The branches in a control-flow graph indicate pospi-

ble transfers of control which can be made between nodes. Each branch has a

set of conditions associated with it. The conditions are functions of the

values of the program variables. For example, one condition could be "A > 2

and B = C", where A, B, and C are program variables.

We will illustrate the use of the control-flow graph at the module level

in Figures 11-14. Figure 11 is a listing of subroutine LINER, where program

blocks have been identified and numbered. Figure 12 is the control-flow graph

for subroutine LINER, where vertices are blocks. Figures 13 and 14 show the

comparable program listing and control-flow graph for subroutine PLOT. Note

that in PLOT the blocks containing CALL LINER can be expanded into the

control-flow graph of LINER.

In identifying blocks of a program, special attention needs to be given

to the following situations: the IF statement, procedure calls, and DO loops.

A logical IF statement consists of two parts: a logical expression

(evaluated as true or false), and an executable statement (which is only exe-

cuted if the condition is true). Since the executable statement of the IF

statement is not always executed, the whole IF statement cannot be a part of

the same block. This can be seen in blocks 3 and 4 of subroutine LINER as

shown in Figure 11.

Procedure calls are given separate blocks, as shown in block 9 of LINER

(FORTRAN-callable routine ENCODE) in Figure 11 and in block 15 of PLOT (a call

to subroutine LINER) in Figure 13. This is done in order to be able to decom-

pose a routine into its constituent parts. For example, block 15 of sub-

routine-PLOT in Figure 13 can be decomposed into the control-flow graph of

subroutine LINER. For FORTRAN-callable routine ENCODE of block 9 of LINER

shown in Figure 11, there is no need to decbmpose the block (if it were possi-

ble), but by assigning the routine call to its own block, it is easier to

attach functional meaning to the block. This is true since the INPUT and

OUTPUT sets defined for the block will be the same as the INPUT and OUTPUT

sets for the routine.
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SUBR(IJTINE LINER(WEEK,VAR,SCORE,SYMBOL,LSYM,CNT,I4ONTH)
(1) INTEGER WEEK,VAR,SYHBOL,HITE ,ROW,COLUM4N,AXISY,AXISX,YWIDTH,

1 GRID (60,136) .COLMEZ.RCWSZCNT,MONTH(3)

-(2) COMMONI~ /BLOCKI/GRID ,AXISX,AXISYCOLMSZ ,ROWSZ .YWIDTH.MXWKS

XHITE=SCORE/0. 2
(3) HITE=INT(XHITE)

DIF=XHITE-1IITE
IF(DIF.GE.O.5)

(4) 1 HITE=HITE+l

(5) DIF=HITE-XHITE
IF(DIF.GT.O.5)

(6) 1 HITE=1IITE-1

(7) C0LUM.(AXISY+2)+(VAR-l)*(MAXWKS+2)+(WEEK-1)
IF(SYMBOL.EQ.IH* '.AND. CNT.NE.0)

(8) 1 GO TOI10

(9) ENCODE (1, 200,NCNT) CNT

(10) GRID (AXISX,COLUMN)=NCNT
GO TO 12

(11) 10 GRID(AXISX.COLUMN)=1HC

(12) 12 GRID (50, COLUMN) =LSYM

(13) DO 20 J = 1.3

(14) 20 GRID(AXISX-3-J,COLUNN)=MONTH(J)

(15) IF(IIITE.EQ.0)

_(16) 1 GO TO 40

F(17) DO 30 ROW -2.HITE+1

(18) IROW =ROW-1

(19) 30 GRID(IROW4AXISX.COLUMN)=SYMBOL

(20) 40 CONTINUE

(21) 200 FORMT(I1)I
RETURN
END

Figure 11. Subroutine LINER partitioned into blocks.
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Figure 12. The control-flow graph for subroutine LINER
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SUBROUTINE PLOT(MEANS ,COUNTS ,LABEL,N,NWIEEKS ,NIN ,NLOUT ,DATEI)
(1) INTEGER COUNTS(21,7),VARSYMBOL,WK,LETTER(12),CO(JNT,CLMN,

I CLMN,MONTH(3),DATE1(21,12)
REAL MEANS(21,7)

(2) DATA LETTER/1HA,1HB,1HC,1HD,1HE,1HF ,1HG,IHH,lHI ,1HJ,1HK,1HL/

(3) IF(LABEL.EQ.3HPOS)

(4) 1 NVAR=7

(5) IF(LABEL.EQ.3HNEG)

(6) 1 NVAR=6

(7) SYMBOL=1H*
NCOUNT=NLIN

(8) DO 20 VAR=1,N

(9) NCaJNT=NCO1JNT+l
NWKS-WEE(S

(10) DO 20 WK = 1,NWYS

(11) DO 10 J = 1,3

(12) 10 MONTH(J) -DATE1(WK,J)

(13) CLMN=WK

IF(MEANSOJK,VAR) .EQ.9.0)

(14) 1 MEANS(WK,VAR)=0.0

(15) CALL LINER(CLMN,VAR,I4EANS(WK,VAR),SYMBOL,
1 LETTER(NCOUNT) ,COUNTS(WK,VAR) ,MONTH)

(16) 20 CONTINUE

Figure 13. Subroutine PLOT partitioned into blocks.
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(17) IDIF=NVAR-N-2

(18) DO 50 IVAR=(N+1),(N+2)

(19) VAR-IVAR+IDIF
NCOUNT=NCOUNT+1

(20) DO 50 WK=L,NWKS

(21) DO 22 J7=1,3

(22) 22 MIrI(J)=DATEI(WK,J)

(23) CLMN=WK

IF (MEANS (WK,VAR) .EQ.-1.O)

(24) 1 GOTO26

(25) IF(VAR.NE.NVAR)

(26) 1 GO TO30

(27) SYMBOL=lH*
LSYM=1IH*
GO TO 40

(28) 26 MEANS(WK,VAR)=O.O

(29) SYMBOL=1HX
LSYM=1HX
GO TO 40

(30) 30 LSYM=LETTER(NCAJNT)

(31) 40 CALL LINER(CLMN,VAR,MEANS(WK,VAR),SYMBOL,LSYM,
1 COUNTS(WK,VAR) ,HONTH)

(32) 50 CONTINUE

(33) NLOUT=NCOXJNT-1

(34) RETURN
END

Figure 13. Subroutine PLOT partitioned into blocks (cont.).
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Figure 14. The control-flow graph for subroutine PLOT.
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Figure 14. The control-flow graph for subroutine PLOT (cont.).
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[T'i
For the DO loop construct, we add two special nodes, such as nodes 13a

and 13b in the control-flow graph for LINER shown in Figure 12,'and we replace

the DO statement itself. The following is an example from blocks 13 and 14 of

LINER shown in Figure 11:

(13) DO 20 J = 1,3

(14) 20 GRID(AXISX-3-J,COLUMN) = MONTH(J)

is replaced by

(13) J = 0

(13a) 19 J = J + I

(14) GRID(AXISX-3-J,COLUMN) = MONT(J)

(13b) 20 IF(J.LT.3) GO TO 19

The reason for doing these alterations is to more explicitly describe the

looping structure which the DO loop construct represents. The actual state-

ment replacement need not be visible to the maintenance programmer, but would

be used in the analysis of the program's structure and error charActeristics.

There are some other aspects of the control-flow graphs which need

explanation, such as the role of the subroutine-statement vertex and the

COMMON-statement vertex. Both of these vertices can be considered as input-

output "ports". Although no variables in these two vertices are part of an

executable statement, we still construct the input set and the output set for

both vertices. This allows us to better define the data flow within the

module (see the data-flow graph for subroutine LINER).

Since modules can be decomposed into blocks and blocks decomposed into

statements, there is an imposed hierarchy within the control-flow graph. The

uppermost level of this hierarchy is the main program module. The lowest

level of the hierarchy contains individual statements.

4.1.3 Data Flow

The purpose of this abstraction is to describe all the possible ways in

which data can be transferred between program statements. Not as common as

the control-flow graph, a data-flow graph is a directed graph, where branches

represent transfer of data and vertices represent sections of code. It allows

the programmer to see how individual data objects are used in the program, and

where they are defined (set) and referenced.
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The data-flow graph we have defined uses the three vertex types described

for the control-flow graph as well as a fourth: the substatement. A sub-

statement vertex contains one of the syntactic elements of the statement

(e.g. a variable, an operator). While the statement vertex treats a state-

ment as a block box, a graph at the statement level (vertices are substate-

ments) reveals the syntactic structure of the statement. An example of a

data flow graph at the statement level, where substatements are vertices, is

given in Figure 15.

A =1 +B

B + A

Figure 15. A data-flow graph at the statement level.

The graphical notation is similar to that used in [191 to describe systems.

For the data-flow graph we have defined the following associated sets:

Pi = the set of input parameters

P = the set of output parameters
Gi = the set of global input variables

Gi = the set of global output variables

S = the set of secondary (local) variables

The associated sets for subroutine LINER are:

Pi CWEEK,VAR,SCORE,SYKBOL,LSYM,CNT,MONTH]

P intl
0

Gi = (AXISX,AXISY,MXWKS]

G = GRID)

S = (XHITEHITE,DIF,COW1.t,NCNT,J,ROW,IROW)

The sets are constructed for modules. For blocks and statements, only simple

input and output sets are constructed.
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The branches of a data-flow graph are labelled to represent the name

given to the set of data objects which "flows" along the branch. Since such a

set may contain more than one variable, the set itself can be thought of as a

type of data object which can be decomposed into its constituent elements.

Since data objects can be placed in these aggregate sets, it reduces the

number of "data objects" which are part of the data-flow graph. If more

detail is desired, the desired labels can be decomposed to reveal individual

data objects.

In a data flow graph, each vertex can be considered as a "processing

unit" and each branch a "pipeline" through which data objects move. Since

three of the four vertex types used are the same as those used in the control

flow graph, there is a similar facility for decomposition. However, in the

data-flow graph, there is the added possibility of decomposing the branches

in terms of the branch sets.

The input and output sets for the vertices in a data-flow graph can be

easily constructed. For example, the data-flow graph and the branch sets for

a section of subroutine LINER shown in Figure 11 are given in Figures 16 and

17. The branches going into block 10 in the data-flow graph of subroutine

LINER shown in Figure 16 represent the sets which contain the input elements

to block 10, and the branches leaving block 10 represent the output elements.

Hence, branch sets 11, 12, and 10, which include AXISX, COLUMN, NCNT, are

subsets of the input set to block 10, and branch set 17 constitutes the output

set of block 10.

4.1.4 Data Object Structure

The purpose of this abstraction is to describe the logical structure of

data objects. This is necessary since the structure of data objects may

change. In order to describe such a change, a well-defined abstraction is

necessary. Since a data object structure can have a great deal to do with

the types of processes defined within a program, such as the procedures

defined for a table structure, a clear definition of the structure of data

objects can help the progranner understand the program.

We define a type classification scheme for data object structure and an

associated graphical representation using the following six questions, inde-

pendent of the implementation language used. Of the following six
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Branch Number Branch Set.

1 (SCORE)

2 (HITE]

3 (BITE,XHITE]

4 (HITE)

5 [HITE]

6 (HITE)

7 (AXISY,MAXWKS]

8 (VAR ,WEEK, SYMBOL, CNT]

9 (CNT]

10 (AXISX]

11 (COLUMN)

12 (NCNT]

13 (COLUMN)

14 (AXIsx]

15 (COLUMN]

16 [LSm]

17 (GRID]

18 (GRID]

19 (GRID]

Figure 17. The branch sets for the data-flow
graph in Figure 16.
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questions, the last five questions were suggested by Honig and Carlson [36].

1) Aggregate: (yes, no)

2) Homogeneous: Do the members have the same structure? (yes, no)

3) Basic: Are the members atomic? (yes, no)

4) Ordered: Are the members ordered? (yes, no)

5) Number: What is the nature of the aggregate cardinality? (fixed,

variable but bounded, unbounded)

6) Identification: How are the members identified? (number, name,

pointer, none)

These questions allow us to classify a data object independent of any

particular programming language. In order to further identify a data object's

structure we add the following secondary set of questions:

2) Homogeneous

2.1) If not homogeneous, how many structures are represented?

3) Basic

3.1) What is (are) the data structure(s)?

4) Ordered

4.1) If ordered, what is the sorting variable?

5) Number

5.1) If fixed or bounded, what is the bound?

6) Identification

6.1) If identified by number, name, or pointer, what is the identifier

type for a given element?

Since a data structure can be described in terms of other data struc-

tures, there is the possibility of describing hierarchical or recursive data

structures.

Figure 18 shows some examples of data object structures represented as

type graphs and their associated classifications. The underlined words are

considered to be atomic (in the case of integer and string) or reserved words

(in the case of fixed and number). Note that in Figure 18(b), there is a

node C which is not atomic.

The types of vertices for the type graph are different from vertices

in the data-flow or control-flow graphs. In the three sample graphs, there

are two types of vertices: Name and element. For example, in
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(a) A FORTRAN array A with Aggregate: yes
four integer elements Homogeneous: yes

Basic: yes, integer
4(l.. integer Ordered: yes,index

Number: fixed, 4
Identification: number

(I.. 4) integer

(b) A non-homogeneous array B Aggregate: yes

Homogeneous: no,2
Basic: no integer C
Ordered: yes, index
Number: fixed,4

2(l..2) integer Identification: number

(I..2) integer
(3..4) C

2(3.. 4) 1 C

(c) A record structure C Aggregate: yes
with two fields: name and age Homogeneous: no,2

Basic: yes,string integer
Ordered: no
Number: fixed, 2

l(name) string Identification: namep(1aname)ji

(age) inte2er

1l(age) integer[

Figure 18. Some graphs of data object structures
and their associated classifications.
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Figure 18(c) vertex C is a rame vertex and the two rectangles (string and

integer) are element vertices. The branches in a type graph do not have

associated directions and show logical associations between vertices and

allow the associations to be described through the use of labels.

4.1.5 Execution Flow

The purpose of this abstraction is to identify all possible program

paths in the program and their associated conditions (if possible). Actually,

the execution flow is another way of describing the information contained in

the control-flow graph. Although it is not as important as the control-flow

graph, the execution flow is useful when analyzing the program's structure.

The most common representation of execution flow is simply a sequence of

vertices with some notation to indicate which vertices can be executed more

than once. For example abc*d represents the execution sequence with a, b, c,

and d as vertices, where c can be repeated any number of times.

The vertices used in an execution-flow graph are the same as those used

in the control-flow graph. This allows the vertices to be decomposed in the

same way as done for a control-flow graph. The branches in an execution-flow

graph merely indicate the order in which the sequence occurs since there are

no decision points in an execution-flow graph. Figure 19 shows a simple

execution-flow graph.

a

d

Figure 19. A simple execution-flow graph representing

the sequence abc*d.

4.2 Use of the Abstractions

In order to describe a modification to an existing program, we construct
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the four abstractions for the program. This constitutes the program model.

Any change to the program is then described in terms of the model. Therefore,

it is necessary to define i set of primitive operations which can be used to

modify the program's abstrictions. We have identified the following primitive

operations:

1) add a vertex,

2) delete a vertex,

3) add a branch,

4) delete a branch,
5) add a branch label,
6) delete a branch label,

7) add a variable to a branch set,

8) delete a variable from a branch set,

9) add a branch set to a branch,

10) delete a branch set from a branch.

For each abstraction, a particular set of operations apply.

For the control-flow graph, only operations ) through 4) apply. For

the data-flow graph, all ten operations apply. The data-object-type graph

would use the first six operations, and the executaon-flow graph (like the

control-flow graph) would use the first four.

The first six operations can be formalized as follows:

T) INV(R,X,y): Ins vertex x representing system X in the graph R as a

subvertex of y

2) DLV(R,x): delete vertex x and all of its subvertices and all branches

connected to these vertices from the graph R

3) INB(R-A,[x,y): insert branch a representing association A and directed

from x to y in the graph R

4) DLB(R,a): delete branch a and all of its subbranches from the graph R

5) IBL(R,a,4): label branch a in graph R with label

6) DBL(R,a): delete label from branch a in graph R

In a similar manner, operations can be formalized for the other four

primitive operations. The above operations are similar to those proposed by

Kunii and Harada [19].
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4.2.1 An Outline of a Methodology for the Specification of Program Modifica-

tion Proposals

The following is an outline of a methodology which can be used to specify

a possible modification:

1) Construct the program model (the four abstractions).

2) Determine the type of change to be made in terms of one of the abstrac-

tions (control-flow, data-flow, data-object-structure).

3) Locate the lowest level of abstraction at which the entire change is "Visible".

4) Describe the proposed change in terms of the primitive operations definedI

5) Determine the effects of the change on all of the abstractions in the

program model.I

In most cases the change will be classified as a control-flow or data-

flow change. However, when the main alteration is for a data object struc-

ture, the change should be classified accordingly. After the change is

classified, the prograrmmer should go to the corresponding graph to determine

the level at which the change is to take place. This level must be the lowest

level of abstraction at which the entire change can be described within one

vertex. This vertex is called the unit of change. For example, if we desire

to alter a data structure, we would find the lowest level in the associated

graph in which the entire change is to be described. If the data structure

is a table of-records (a record having three fields, each of a different type)

and we wish to change two of the three fields in the record type, then the

record type graph would be the unit of change.

It is possible that once the programmer has identified the unit of change,

the alterations could be made I1'v a text editor. The text editor would have

the following characteristics:

1) The unit of change would reside in the workspace of the text editor.

2) Any modification to the workspace would be translated into the set of

primitive operations for the given graph automatically by the system.

-1t qvstem would keep track of modifications so that any edition of the

-- g*ramn CoMzld be reconstructed.

e .. ditor would not actually be able to change the program model.
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5) The purpose of the text editor would be to translate "ordinary text modi-r fications" into a set of formal primitive operations which would consti-

tute the specification of the modification proposal.

6) The set of formal primitive operations (the specification of the proposed

modification) would then be used to actually modify the program in terms
of the program model.

4.2.2 An Example

Suppose that the user wishes to change the plotting symbol used in the

first 16 blocks of subroutine PLOT shown in Figure 13 by changing the '*I to

'0'. We use the proposed methodology to specify the change to be made in

terms of primitive operations defined on the program model.

Assuming that the program model has been constructed, we must first

determine the type of change to be made. Since the change will be made to a

substatement within the first statement of block 7, the type of change will

be a data-flow change. This is our choice since only the data-flow abstrac-

tion is able to describe the relationships which exist between substatements.

The lowest level of abstraction at which the entire change is "Visible"

is at the statement level, where substatements are the vertices of the state-

ment level, data-flow graph. Therefore, the first statement in block 7 of

subroutine PLOT shown in Figure 13 is the unit of change for the modification.

Figure 20 shows the graph for this unit of change before and after the modifi-

cation.

(a) S

(b) Sl

Figure 20. An example illustrating the use of adata- flow graph at the statement
level to describe a statement before (a) and after (b) a change.
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This change would be expressed as the following sequence of commands operating

on graph S1 of block 7 in subroutine PLOT:

DLV(Sl,l) delete vertex i in graph Sl

INV(SI,X,I) insert vertex I representing

system X into graph Sl

INB(SI,A,[I,2]) insert a branch from node 1 to

node 2 representing association A

into graph S1

The operation DLV(Sl,l) deletes vertex 1 from graph S1 and all of the branches

which were attached to vertex 1. INV(SI,X,I) places the vertex representing

system X inside the box representing graph SI. After this operation, there

is a vertex representing X with no branches attached. In order to add the

necessary branch from vertex I to vertex 2, INB(SI,A,[I,2]) must be executed.

This adds the branch representing association A from vertex 1 to vertex 2.

System X would be the character string 'iHO',and association A is essentially

null since an association label in this case is not necessary. The effects of

this change on the other three abstractions are nil since no data structure

or control flow are affected. The change is felt only within statement i in

block 7 of subroutine PLOT.

As noted before, the programmer should be able to make the textual change

to a line of code (in this case, to a substatement) and have the text editor

construct the corresponding sequence of primitive operations on the program

model. It is this resultant sequence which would constitute the formal speci-

fication of the proposed modification. All of this implies that the text

editor would have access to the structural information contained in the pro-

gram model. In other words, the text editor would have to "know" the level at

which the change is to occur and what objects (module, block, statement, or

substatement) are being ikisrred or deleted.

4.3 Conclusion

When an activ4 ty is to be formally described, all of the objects and

relationships involved in the activity must necessarily be well-defined. This

is the case for the "activity" of describing a given program modification in

formal terms--all of the objects and relations involved in the modification

must be well-defined.
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Most of our work in this area has involved the identification of the

pertinent objects and relations affected by a program modification. We have

tried to identify those particular objects and relations which are common to

all programs no matter what implementation language is used. Among those'

relations and objects, we must decide which could be formalized and which

would be most useful. Consequently, we have chosen the module, the block,

the statement, and the substatement as objects and the abstractions of control

flow, data flow, execution flow, and data object structure as representations

of the relationships among these objects.

More work needs to be done in order to formally describe the relation-

ships among the four identified abstractions. Furthermore, more work needs

to be done in order to identify the primitive operations for all four abstrac-

tions. So far we have only defined a few operations for the control-flow and

data-flow abstractions.

With the tremendous amount of information contained in a set of program

abstractions, we need a database system to manage the abstractions. This is

especially true when using the abstractions to describe large-scale programs.

A relational database [471 seems to be the best type of database to use withI
our methodology. We have considered a hierarchical database model before, but

found it unable to effectively describe all aspects of the four abstractions.

Furthermore, unlike the relational model, the hierarchical model has no for-

malized method of describing operations.

Finally, we have identified some of the essential aspects of a methodol-

ogy for the formal description of a given program modification. Although it

needs to be formalized, it appears feasible and language-independent. If

incorporated with a database system and a text editor, it should provide a

workable and straightforward technique for the formal description of given

program modifications.

5.0 EFFECTIVE TESTING FOR SOFTWARE MAINTENANCE

As mentioned before, the fourth phase of the maintenance process is to

test the modified program. However, very little results are available in this

area. Although there have been some considerations on this type of testing

(48-501, the results neither are practical, nor cover the generation of test

cases for modified programs. In fact, testing the modification performed on
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a large-scale program during the maintenance phase has normally been regarded

as an extention of testing performed during the development phase. However,

because the testing environments for the development phase and the maintenance

phase are different, we need a different approach to testing in the mainte-!

nance phase. Therefore, we have considered to establish.a testing strategy for

validating the modification performed on a large-scale program and ensuring

that the modified program is reliable. In this section, we will present our

results in this area so far obtained.

5.1 Errors Likely Encountered in the Maintenance Phase.

Our testing strategy in the maintenance phase is intended to detect two

major kinds of errors. The first kind is the residual errors in the program

which become critical errors due to the modification of the program. The

s'econd kind is the errors introduced as a result of the modification. The

ripple effect analyzer presented in Section 3 can only detect a subset of the

errors of the second kind, i.e. the ripple effect of the modification. Before

we present our testing strategy, let us first discuss those errors which can

be encountered in the maintenance phase.

5.1.1 Residual Errors Activated by Program Modifications

It is well known that large-scale software systems always contain a

number of residual errors simply because there exists no software design

methodology that can ensure that the large-scale software systems generated by

the design methodology are error-free. These residual errors are called

dormant errors because they do not affect the normal operation of the software

systems; otherwise, they would have likely been detected. However, due to

certain program modifications, some dormant errors may become activated. For

example, if some program modifications cause the change of execution paths so

that the execution paths in the modified program may involve certain

dormant errors, then these dormant errors will become active errors. Changes

of input domains of certain execution paths [51] and loss of compensation

effect of certain errors due to program modifications are other examples of

this type of errors.

5.1.2 Errors Introduced by Program Modifications

We cannot assume that the maintenance progranmmers always do a perfect job

for program modifications, and hence new errors may be introduced during the
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modifications. This kind of errors can be considered in the following cate-

gories.

5.1.2.1 Errors Introduced by Making Modifications

In the software development phase, the programmners may introduce errors

in any development stage. During the maintenance phase, the programmers

may also introduce errors during the generation of modification specification

and the implementation of the modifications. In fact, the chances of intro-

ducing errors by making modifications in the maintenance phase are often

bigger than that in the development phase because of incomplete documentation,

misunderstanding by the maintenance programuers and lack of effective soft-

ware maintenance methodology. These errors could be any of the three types,

each associated with one of the three abstractions: data flow, control flow

and data object structure, as discussed in Section 4.1.

5.1.2.2 Inconsistencies Introduced by Program Modifications

Because of program modifications, there is ripple effect from the loca-

tions of modifications, and certain data flow and control flow may be changed.

These changes may cause inconsistencies in the program if all their ripple

effect is not taken care of. In the following subsections, we will discuss

various types of errors belonging to this category.

5.1.2.2.1 Inconsistencies Due to Data Flow Changes

Suppose a modification involves several variables, which may be used to

define another variable, say A. In turn, variable A may be used to define

other variables. In this way, the effect of the modification is carried

through data flow. The ripple effect analyzer discussed in Section 3 can
qr
trace the ripple effect due to data-flow changes and identify the program

blocks containing the variables which may need re-examination. Data-flow

inconsistencies can be defined with respect to the data flow abstraction

discussed in Section 4.1.

5.1.2.2.2 Inconsistencies Due to Control Flow Changes

These inconsistencies are caused by the changes in conditional state-

ments (IFs), transfer statements (GOTOs), etc. It is usually more difficult

to identify the inconsistencies due to control flow changes than those due

to the data flow changes. For example, consider a segment of the program
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shown in Figure 21(a). When I is 0, the statement K = M/I is in error, and

the maintenance programmer may correct the error as shown in Figure 21(b) by

changing the statement from"IF(I.LE.O) GO TO 10" to "IF(I.LT.0) GO TO 10". This

READ, I

IF(I.LE.0) GO TO 10

K = L/I

GO TO 20
10 K = M/I

(a)

READ, I

IF(I.LT.0) GO TO 10

K = L/I

GO TO 20
10 K = M/I

(b)

Figure 21. An example illustrating an inconsistency caused by a control flow
change: (a) the program with an error before modification, and
(b) the program after a possible correction for the error.

modification avoids the error encountered in the statement K = M/I, but may

cause another error in the statement K = L/I because there may be a control

flow from the modified statement to the statement K = L/I. When I is 0, the

statement K = L/I is erroneous. This type of errors cannot be covered by the pre-

sent ripple effect analyzer discussed in Section 3, although it can be classi-

fied in terms of the control-flow abstraction discussed in Section 4.1.
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5.1.2.2.3 The Constant Problem

It is a good programming practice to limit the use of constants in devel-

oping programs, and a data item in a program can be defined in terms of an

expression. Let us consider the case as shown in Figure 22. A data item

INDEX =2

ADDR =5 + INDEX

Figure 22. An example to show the constant problem.

INDEX is defined in terms of an expression consisting of only a constant and

is used to define another data item ADDR. Since it is not an error to use the

value which is assigned to INDEX to define ADDR, "ADDR = 5 + INDEX" may be

written as "ADDR = 7". When "INDEX = 2" is modified to "INDEX = 3", the

definition of ADDR must be adjusted to reflect this change. However, there is

no effective way to adjust it because INDEX is no longer used to define ADDR.

The failure of adjusting such a definition introduces an error in the program.

This type of errors can be defined in terms of the data-flow abstraction at

the statement level, as described in Section 4.1.

5.1.2.3 Errors Introduced Due to Imperfect Correction of Identified Errors

After a modification, a subset of the inconsistencies and the activated

errors are identified. Since we cannot assume that the maintenance programmer

is able to correct all the errors, it is reasonable to assume that after all

the corrections are completed, the program may contain the following types of

errors: newly introduced errors, unidentified inconsistencies, and unidenti-

fied activated errors. An error of this category could be any one of the

three types, each associated with one of the three abstractions: data flow,

control flow, and data object structure as discussed in Section 4.1.
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5.2 A Testing Strategy in the Maintenance Phase

In this section, we will present a testing strategy for validating

programs after their modifications. We will give an overview of the testing

strategy and discuss which types of errors may be detected by the testing

strategy. A part of the testing strategy covering module testing which we

have developed will be presented in the next section.

When testing is performed, at least the following three factors must be

considered: 1) which basic elements of the program are to be tested, 2) how

these basic elements are to be tested, and 3) how thorough a program is tested,

where basic elements we consider in testing modified programs are intramodule

control flows, intermodule control flow and program functions.

For the first factor, we will use three major testing schemes, each test-

ing some aspect of the program: module testing tests intramodule control

flows, integration testing tests intermodule control flows, and system func-

tion testing tests the program against its functional specifications.

For the second factor, we will use two kinds of techniques to derive test

cases. The first technique, called the structural testing, tests the

internal structure of a program, especially its control flow. The second

technique, called the functional testing, tests the functional specification

of the program.

The third factor depends on the testing criterion used. Many testing

criteria have been proposed, but most of the criteria are for structural test-

ing, not for functional testing.

As mentioned before, we need to test the functions and control flow of a

program after its modifications. It is noted that although data flow normally
cannot be tested, it can be analyzed by the ripple effect analyzer discussed

in Section 3. Program functions and control flow cannot be tested by anyone

of the testing schemes mentioned before, and hence it is necessary to consider

the use of a combination of the three major testing schemes for testing the

functions and control flow of a modified program. Before considering this,

we would like to discuss which technique is suitable for which scheme. For

system function testing of large-scale programs, it is not feasible to use

structural testing to derive test cases because a large-scale program is huge

in size and complex in structure. Instead, test cases are derived by
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analyzing the functional specifications of the program, and such specifica-

tion information is assumed to be available in the maintenance phase. In

other words, we use the functional testing technique for system function test-

ing. For module testing and integration testing, we cannot rely upon the

information on the specifications for modules or module interactions, since

they are often not available in the maintenance phase. Therefore, we neel to

derive test cases for module testing and integration testing from the struc-

ture of a program, i.e. we use the structural testing technique for module

testing and integration testing.

A testing criterion commonly used for testing a module is that each

DD-path in the module is traversed at least once [52,53], where a DD-Path of

a module is a series of branches in the module such that

1) the first branch starts from either the entry point of a module or a

decision point,

2) the last branch terminates either at a decision point or the exit point of

a module, and

3) there are no decision points on a DD-path except at its both ends.

The test coveraze. of a testing strategy for a program depends how many modules

in the program and how many DD-paths in each modules are tested.

Our strategy for testing modified programs is to use system function

testing, followed by module testing and then integration testing. The ration-

ale for having system function testing as the first portion of our testing

strategy is that the test coverage of system function testing is the largest

among those of the three testing schemes. However, because test cases for

system function testing are not generated from the program structure, but from

the program functional speLification, we only know which DD-paths of which

modules of the program are traversed after the system function testing is per-

formed. Although the test coverage of system function testing is the

largest among those of the three testing schemes, it is usually not sufficient

to cover all the intramodule and intermodule control flows. Hence, we need to

use module testing and integration testing after applying the system function

testing. We use the module testing before the integration testing because

of the following reasons: module testing is less complex than integration

testing, and the information derived from the module testing, especially
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regarding the intramodule control flows, is very useful to simplify the task

of performing the integration testing.

It is clear from the above discussion that our testing strategy for modi-

fied programs is to test the control flows and program functions affected by

the modifications, and that we use the ripple effect analyzer discussed in

Section 3 to cover the changes of data flows of the modified programs affected

by the modifications.

5.3 Module Testing

Module testing in the maintenance phase is to test intramodule control

flows of modified modules affected by modifications. In other words, we need

to test all the modified DD-paths, newly added DD-paths, and the DD-paths

reachable to or from them. The testing criterion for our module testing

scheme is to traverse each of these DD-paths at least once.

Our module testing scheme based on this testing criterion is heuristic

and can be described as follows: Let .6 be the set of all modified DD-paths,

newly added DD-paths and the DD-paths reachable to or from them in the module.

Let a level-i path i = 0,1,2,..., in a module be defined as follows:

1) A level-0 path in a module leads from the entry point to the exit point

of the module without using any DD-path more than once.

2) A level-i path, i = 1,2,..., leads from an alternative predicate outcome

along some level-(i-l) path through a set of DD-paths not present on any

lower level path, and terminates on the level-(i-l) path at a point

earlier than the original DD-path. A level-i path, i = 1,2,..., repre-

sents iteration "over" a level-(i-l) path [52].

The derivation of all the level-i paths, i 2 0, in amodule can be represented

by a tree T. There exists a software tool RXVP [52] that can generate all

the level-i paths, i = 0,1,2,..., automatically. The subtree of the tree T

containing all the level-i paths, i = 0,1,2,..., with a level-0 path P as its

root, is called the subtree of Pj and is denoted by T . With these defini-

tions, our module testing scheme can be presented as follows:

1) Select a subtree T containing the largest number of elements in h. If

there are two or more such subtrees, arbitrarily choose one of them.

2) Select a path from the entry point to the exit point consisting of only

the branches contained in any of the level-i paths in the subtree T such
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that the path contains the largest number of elements in h as a test path.

Use any of the available techniques [54-56] to generate a test case to

traverse this test path. If it succeeds, delete all the elements in .,

and let the remaining set be B'. If the generation of a test case to

traverse this test path fails, select another path with the next largest

number of elements in & as the test path. If the number of elements in h

covered by this test path is greatly reduced, it may be worthwhile to

change the subtree T. to a subtree Tk which has the same or the next

largest number of elements in &, and repeat this process until some ele-

ments in h are covered by a test case, and reduce the set . to '.

3) Repeat Step 2) until h becomes empty or it is decided that all the

remaining elements in h are nontraversable. In the latter case, the

modified module needs to be examined so that the existence of the non-

traversable DD-paths can be explained [571.

Le- us demonstrate this module testing scheme to one of the modules in a

JOVIAL program called DEMO, a revised version of a demonstration program

BLISTIC. This module is called FIND and searches a data base to see whether

or not it contains a given set of data. Its source code, directed graph of

DD-paths, the tree T, and a table listing the DD-paths which make up each

level-i path are given in Figure 23 and Table 1. We use the notation (Ti. N)

to keep track of N, where N is the number of elements in the set h which is

contained in the subtree T .
Suppose that DD-path1 and DD-path8 are modified, and we have ((TI,4) ,

(T 25),(T3,6),(T4,7),(T5,5)) . We select T4 to construct a test path. The

derived test path is 1-3-5-7-9-10-3-5-7-9-10-3-5-7-9-11, and is executable.

As a result of this derivation of the test path, we now have ((TI,0),(T20) ,

(T3 ,0),(T 4 ,0),(T 5 ,1)]. Next we select T5 and the derived test path is

1-3-5-7-8, which is also executable. Now since we have exhausted all the

elements in &, we terminate the scheme.

6.0 QUALITY FACTORS FOR SOFTWARE MAINTAINABILITY

As mentioned in Section 2.0, there are several software quality factors

affecting software maintainability. We have developed a stability measure and

a measure for understandability of programs. We will briefly discuss these

results.
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D-nodes

A PROC FIND(FI ,Wl ,J2,Tl FLAG)

ITEM Fl F $

ITEM WI F$

ITEM W2 F

ITEM TI F $

ITEM FLAG 1 36 S $

BE GIN

FLAG 1$

FOR I1 0, 1, 2

BEGIN

IF Fl NQ THRST($I$) $

B TEST $

IF Wl NQ LOADWT($I$) $

C TEST $

IF W2 NQ FLWT($I$) $

D TEST $

IF TI EQ BURNTM($I$) $

E GO TO HIT $

F END

RETURN $

HIT. FAG =O0$

RETURN $

G END

Figure 23. An example to illustrate the module testing
scheme. (a) The source code of module FIND.
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Figure 23. (b) The directed graph of DD-paths for module FIND.
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Figure 23. (c) The tree T of all level-i

paths for module FIND.
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Level-i - DD-paths belonging Initial Terminalpath no. to it node node

10 1P,2,11 A G

2 0 1, 3., 4,11 A G

3 0 1, 3,5,6, 11 A G

4 0 1, 3,5s,7p,9,11 A G

5 0 1, 3,5.,7,8 A G

6 1 10 F B

Table 1. All the DD-paths which make up each
level-i path for module FIND.
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6.1 Stability Measures for Software Maintenance

The stability of a progtram. is the resistance of the program to the poten-

tial ripple effect caused by program changes. Before considering the stabil-

ity of a program, it is necessary to develop a measure for the stability of a

module. The stability of a module is a measure of the resistance to the

potential ripple effect caused by modifications to the module on other modules

in the program. There are two aspects of the stability of a module: the

logical aspect and the performance aspect. The logical stability of a module

is a measure of the resistance to the ripple effect of such a modification on

other modules in the program in terms of logical considerations. The perfor-

mance stability of a module is a measure of the resistance to the ripple

effect of such a modification on other modules in the program in terms of
performance considerations. We have developed logical stability measures for

a program and the modules of which the program is composed. Performance

stability measures will be developed in the future. The stability measures

are being developed with the following requirements to increase their appli-

cability and acceptance:

1) Ability to validate the measures,

2) Consistency with current design methodologies,

3) Utilization in comparing different designs, and

4) Diagnostic ability.

It should be noted that the stability measures being described arenot in

themselves indicators of program maintainability, rather a significant factor

contributing to program maintainability. Although the "easures being

described estimate program stability, they must be utilized in conjunction

with the other attributes affecting program maintainability.

Our preliminary results on the development of logical stability measures

have been presented in 181. However, much work remains to be done in the

application of thene stability measures to the design phase, the development

of performance stability measures, and the development of automated restruc-

turing techniques based upon these measures. The stability measures must also

be validated.

6.2 Measures for Procram Understandability

In another area of software quality, we have established a foundation for
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examining software understandability and have developed a method for .estimat-

ing it. Our approach to this subject is guided by two special considerations.

First, we are primarily concerned with the maintenance phase of a software

system. Therefore, we deal with existing software systems and not systems

still in the design or coding phases. Secondly, we consider not only the

program source code but also other software system documents, such as flow-

charts, block diagrams, design documents, separate program documentation, and

any other types of documentation which may exist. The reason is that when

someone is attempting to understand a program, he uses as much information on

the software system as possible. Thus, each component in the document contri-

butes its share to the overall understandability of the system.

Our measure of understandability for a software system is based on

Shannon's information theory [581 and to a lesser degree on Halstead's soft-

ware science theory [591. We hypothesize that the more information that is

contained in a software system, or a part of it, the more time that is

required to understand the system, or that part of it. Furthermore, we con-

tend that the more time that is necessary to understand the system, the less

is its understandability. In assessing the information content of a "message",

Shannon's theory says that the amount of information in a message of a speci-

fic length is based on the total number of messages possible of that length.

Relating this theory to our approach, we define an understandability measure

called the description volume which .Is based on the "information content" of

each component of the software system document, such as program code, flow-

charts, block diagrams, etc. Characterizing each component as consisting of

basic elements and relationships among these elements, we compute a descrip-

tion volume based on the number of possible configurations of the particular

component given the number and type of elements and their relationships. The

more configurations that are possible, the more information that is contained

in the particular configuration that exists.

Our method relates to Halstead's software science in the sense that one

component in the computation of the description volume for program code is

the program volume (59]. We then extend these ideas by computing additional
components for the description volume which are based on the control structure

of the program and on the relationships which exist among the data structures.
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Since there can be many different types of components in the documenta-

tion of a software system, our method provides for the computation of a

description volume for each component. Each component is assessed based on a

set of characteristic measures selected for that component. From these char-

acteristic measures, the description volume is computed. The sum of the

description volumes of all components then yields the understandability of

the software system.

At present, our approach is expected to work well when the documentation

of the program under consideration is complete and well organized. Substan-

tial further work is required to generalize iur results in order to make them

practical.

7,0 DYNAMIC MONITORING OF SOFTWARE BEHAVIOR

In this area, we have investigated dynamic monitoring of software behav-

ior for maintenance purpose. A software system that can monitor its own

behavior during its execution (dynamic monitoring) is called self-metric soft-

ware. Assertions are usually used to achieve dynamic monitoring. They can

provide documentation that helps the maintenance programmer avoid modification

errors, and assist him in the detection of any errors that are introduced

during modification.

Our results, which have been presented in [60-62], expanded existing

assertion concepts to include array data structures which have been virtually

ignored in all previous work. Initially, we developed a record oriented

approach toward array data structures. Based on this approach, we have pre-

sented an assertion technique that will enable effective monitoring of most

linear list data structures. We believe this is a significant step in the

development of dynamic monitoring as an effective software development tool.

We also discussed some important issues relative to the implementation of the

assertion concepts and use JOVIAL as an example. We have demonstrated our

assertion techniques by incorporating them into JAVS [601, and given some

figures concerning the overhead involved (621. More research is needed to

study the use and benefits of dynamic monitoring throughout the whole software

life cycle with respect to improving software reliability [63] and maintainabil-

ity. We need to determine how easily assumptions and decisions can be defined

and explicitly stated during software design, and how many of these assertions
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can be effectively written and used. Although assertions appear-to be a

promising tool for detecting errors introduced during software maintenance, we

need to determine how effective this type of dynamic monitoring will be in

detecting the errors which may be encountered during the maintenance phase.
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